

PROJETO POLÍTICO PEDAGÓGICO DO CURSO DE BACHARELADO EM ENGENHARIA DE ALIMENTOS

Manaus, Amazonas

2014

ADMINISTRAÇÃO SUPERIOR

Márcia Mendes Perales

Reitora

Hedinaldo Narciso Lima

Vice-Reitor

Lucídio Rocha Santos

Pró-Reitor de Ensino de Graduação

Gilson Vieira Monteiro

Pró-Reitor de Pesquisa e Pós-Graduação

Luiz Frederico Mendes dos Reis Arruda

Pró-Reitora de Extensão

Ricardo José Baptista Cavalcante

Pró-Reitor de Administração

Kathya AugustaThomé Lopes

Pró-Reitora para Assuntos Comunitários

Mariomar de Sales Lima

Pró-Reitor de Planejamento

Néliton Marques da Silva

Diretor da Faculdade de Ciências Agrárias

Membros da Comissão de Elaboração:

Prof. Antonio Machado Leitão

Prof. Antonio José Inhamuns da Silva

Prof. Pedro Roberto de Oliveira

(Portaria 43/2008-GD/FCA/UFAM)

Membros da Comissão de Revisão e Adequação:

Prof. Antonio Machado Leitão
Prof. Carlos Victor Lamarão Pereira
(Portaria 2101/2011-GR/UFAM)

Coordenador do Curso:

Profa. Edivânia dos Santos Schropfer (Portaria 673/2012-GR/UFAM)

Assessoramento Técnico-Pedagógico

Msc. Marnice Araújo Míglio
Pedagoga DAE/PROEG
Profa. Dra. Rozana de Medeiros Sousa Galvão
Diretora do DAE/PROEG

SUMÁRIO

Apresentação	5
1. MARCO REFERENCIAL	7
1.1. CARACTERIZAÇÃO DO CURSO:	7
1.1.1. Diagnóstico da área no país e quadro geral de conhecimentos;	7
1.1.2. Formação de Pessoal e Mercado;	17
1.1.3. Campos de Atuação Profissional;	19
1.1.4. Regulamento e Registro da Profissão;	19
1.1.5. Perfil do profissional a ser formado;	19
1.1.6 Competências e Habilidades: Gerais e Específicas;	20
1.1.7. Objetivos do Curso:	21
. Objetivo Geral;	21
. Objetivo Específico;	21
1.2 . ESTRUTURA E FUNCIONAMENTO DO CURSO:	22
1.2.1 Titulação;	22
1.2.2 Modalidades: Bacharelado	22
1.2.3 Número de Vagas Oferecidas pelo Curso no PSC, PSM e PSMV;	22
1.2.4 Alinhamento do Curso às Diretrizes Curriculares Nacionais	23
1.2.5 Alimento o Curso ao Projeto Pedagógico Institucional	26
1.2.6 Turno de Funcionamento	28
1.2.7 Forma de Organização Calendário Acadêmico	28
1.3. MATRIZ CURRICULAR	28
1.3.1. Eixos Estruturante– Núcleo Comum – Conteúdos Básicos;	28
1.3.2. Eixos Estruturante – Núcleo Profissional	30
1.3.3. Eixo Estruturante – Núcleo Específicos	31
1.3.4. Eixo Estruturante – Núcleo Complementar	32
1.3.5. Eixo Estruturante – Núcleo Complementar Optativo	33
1.3.6. Estrutura Curricular-Periodização	34
a. Componentes Curriculares Obrigatórios;	34
b. Componentes Curriculares Optativos;	34
1.3.7. Carga Horária Total do Curso	39
1.3.8. Trabalho de Conclusão do Curso	40
1.3.9. Estágio Curricular Supervisionado	44
1.3.10 Atividades Complementares	49
1.3.11 Simulados Anuais, Seminários Interdisciplinares e Semana de Projetos Interdisc	52
1.3.12 Ementas, Objetivos, Referências	53
1.4. Concepção Metodológica	116
1.4.1 Cursos e Projetos de Extensão	117 117
1.4.2 Programa Especial de Treinamento PET 1.4.3 Monitoria	117
1 = .1 pp n n n n n n	1 1 7

d) Regulamentação das AACC

Poder Executivo Ministério da Educação Universidade Federal do Amazonas Pró-Reitoria de Ensino de Graduação Faculdade de Ciências Agrárias Departamento de Engenharia de Alimentos

1.4.4 Bolsa de Iniciação Científica 118 1.4.5 Bolsa Trabalho 119 1.4.6 Estágios 119 1.4.7 Participação de Alunos em Eventos Técnico-Científicos 119 1.4.8 Núcleo Docente Estruturante 119 1.4.9 Centro de Apoio Pedagógico 120 1.5. Atividades de Ensino além da Graduação 120 1.5.1. Programa de Pós-Graduação (Stricto Sensu) com conceito da CAPES 120 1.6. Assistência aos Estudantes 120 1.7 Acessibilidade 121 1.8 Princípios Norteadores da Avaliação da Aprendizagem 122 1.8.1 Avaliação do Projeto Pedagógico do Curso 122 1.8.2 Avaliação da Matriz Curricular 122 1.8.3 Avaliação dos Docentes 122 1.8.4 Avaliação pelos Discentes 123 2. INFRAESTRUTURA NECESSÁRIA 123 2.1 Infraestrutura existente no FCA 123 2.2 Infraestrutura a Adquirir 126 2.2.1 Laboratórios e equipamentos para desenvolver as ativid desta Estrut. Curric... 126 2.2.2 Infraestrutura a ser construída 130 3. CORPO DOCENTE E TÉCNICO-ADMINISTRATIVO 134 3.1 Corpo docente da UFAM que poderá contribuir para implantação do curso 134 3.1.1 Necessidades de contratação de professores 135 3.2 Técnicos de Laboratório que podem contribuir para a implantação do curso 137 3.2.1 Necessidade de contratação de Técnicos de Laboratório 138 3.3 Técnicos Administrativos que podem contribuir para a implantação do curso 138 3.3.1 Necessidade de contratação de técnicos-administrativos 139 **ANEXOS** 141 a)Legislação 141 b) Regulamentação do TCC 142 c) Regulamentação do Estágio Supervisionado 148

151

APRESENTAÇÃO

A história da Universidade Federal do Amazonas inicia em 17 de janeiro de 1909, com a fundação da primeira universidade brasileira, a Escola Universitária Livre de Manáos, mais tarde denominada Universidade de Manáos, no coração da Amazônia, enfrentando todas as hostilidades que o amazônida aprendeu a vencer.

Essa grande empreitada, que para muitos parecia temerária e inexeqüível, exigindo grandes sacrifícios de seus fundadores, revelou-se uma iniciativa de sucesso e um exemplo de busca de melhor qualidade de vida para os povos amazônicos, com base na socialização do conhecimento.

A nova Universidade, concebida por Eulálio Chaves, já nasceu alicerçada no espírito democrático que hoje permeia a comunidade universitária, com respeito à pluralidade de idéias, elegendo diretamente Astrolábio Passos como seu primeiro diretor geral, com os votos dos docentes da Faculdade de Ciências Jurídicas e Sociais, Faculdade de Medicina, Faculdade de Ciências e Letras e Faculdade de Engenharia que, juntas, constituíram a Universidade de Manáos.

Para sua implantação, convergiram forças de toda a sociedade amazonense, desde a contribuição financeira do simples cidadão, ansioso pelo advento do ensino superior no Amazonas às subvenções do Estado e dos municípios de Manaus, Maués, Parintins, Coari, Lábrea, Benjamin Constant, Manicoré, Humaitá e Codajás, comprometendo, desde então, a nossa universidade com o homem do interior, como efetivamente ocorre nos dias atuais.

Foram grandes as dificuldades pelas quais passou a Universidade de Manáos, até a sua desintegração em cursos isolados. Maior ainda foi a determinação da sociedade amazonense de refundar a sua universidade em 12 de junho de 1962, por força da lei federal 4.069-A, de autoria do seu idealizador, o senador Arthur Virgílio Filho, sendo rebatizada com o nome de Universidade do Amazonas, e constituída pela reintegração das instituições de ensino superior isoladas que atuavam em nosso Estado. Com a Lei Federal 10.468, de junho de 2002, passou a ser denominada Universidade Federal do Amazonas.

O sonho da primeira década do século passado, de implantação de uma universidade amazônica, realiza-se com a Universidade Federal do Amazonas, que tanto orgulho dá ao povo amazonense, avançando a cada ano na sua nobre missão de cultivar o saber em todas as áreas do conhecimento por meio do ensino, pesquisa e extensão, contribuindo decisivamente para a formação de cidadãos e o desenvolvimento da Amazônia.

A Universidade Federal do Amazonas (UFAM) é constituída atualmente por 18 unidades de ensino, entre institutos e faculdades. Com a maioria de suas unidades administrativas e de ensino instaladas no Campus Universitário, a Universidade oferece atualmente 96 cursos de graduação e 39 de pós-graduação stricto sensu credenciados pela

Capes. São ao todo 31 cursos de mestrado e 8 de Doutorado. Em nível de Pós-Graduação Lato sensu, são mais de 30 os cursos oferecidos anualmente. No que se refere à Extensão, são mais de 600 projetos que beneficiam diretamente a população e 17 grandes programas extensionistas.

Entre os alunos dos cursos regulares de graduação ministrados em Manaus e no interior do Estado e dos cursos de graduação conveniados, a Universidade reúne mais de 20 mil estudantes. Nos cursos de Pós-Graudação Stricto Sensu (mestrado e doutorado) e Lato Sensu são mais de 2 mil estudantes. A Instituição oferece inúmeros laboratórios e bibliotecas para a prática acadêmica e a pesquisa.

A Universidade realiza anualmente dois tipos de seleção para o ingresso no Ensino Superior: o Exame Nacional do Ensino Médio(Enem) e o Processo Seletivo Contínuo(PSC), com 50% de vagas para cada um deles (http://www.ufam.edu.br/index.php/historia-da-ugm).

Com base nestes aspectos e ciente da responsabilidade cada vez maior a que se propõe a Universidade Federal do Amazonas, a nível regional e nacional, a formulação deste antiprojeto: "Proposta de Criação do Curso de Engenharia de Alimentos", se faz necessária visando atender as tendências de crescimento e ampliação do setor Agroalimentar na região, buscando atender uma demenda real e crescente de profissionais, através da excelência no que se acredita ser um processo de formação profissional adequada para atender este mercado tão promissor através dos cursos de graduação.

O propósito do Curso de Engenharia de Alimentos é preparar profissionais capazes de desempenhar as atividades de Engenharia dentro das Indústrias do ramo da Alimentação, desenvolvendo projetos e processos produtivos, a partir das características de qualidade dos produtos, objetivando a otimização dos recursos e aumento da produtividade. Dessa forma, além da formação básica (Ciências Exatas e Biológicas), o curso oferece disciplinas na área de Ciências Humanas, visando introduzir os conceitos administrativos para as atividades gerenciais.

Na sua implantação, o curso de Engenharia de Alimentos, pode iniciar, com as Disciplinas Básicas, e para isso, conta com a infraestruturae recursos humanos dos Departamentos Acadêmicos do Instituto de Ciências Exatas, da Faculdade de Tecnologia e da Faculdade de Ciências Agrárias.

1. MARCO REFERENCIAL

1.1.CARACTERIZAÇÃO DO CURSO:

1.1.1 Diagnóstico da área no país e no quadro geral de conhecimentos

A indústria de alimentos no Brasil surgiu paralelamente com o processo de industrialização. Passou por um crescimento significativo na segunda década do século passado, através de um aumento geral de capital investido no setor de transformação de matérias primas agropecuárias de 15% para 40,2%. Neste período, inúmeras empresas brasileiras foram criadas e um número significativo de multinacionais neste setor se instalou no país. A hegemonia das empresas privadas nacionais durou basicamente atéos anos 60, quando o capital externo passou a predominar, provocando um grande avanço tecnológico da indústria de alimentos, que vem sendo mantido nos últimos quase 50 anos.

Entre as indústrias de transformação, a de alimentos é a que mais se destaca no cenário socio-econômico produtivo. Em 1998, representava 10% do PIB, o que significa 42 bilhões de dólares. Ela emprega mais de 700 mil pessoas e processa cerca de 50% da produção agrícola do país. Dos atuais 420 bilhões de dólares do nosso PIB, cerca de 33% corresponde ao agronegócio nacional, 11% correspondem à indústria de agroinsumos, 28% a produtos agropecuários e 69% ao setor de processamento e distribuição.

O ensino de Engenharia no Brasildemanda uso intensivo de ciência e tecnologia e exige profissionais altamente qualificados, preparados para enfrentar o mercado de trabalho altamente competitivo. Este conceito de qualificação profissional vem se alterando, devendo ser considerados, além dos conteúdos específicos, conhecimentos nas áreas de relações humanas, administração e ambiental, entre outros.

Dentro deste contexto, houve uma crescente necessidade de profissionais com domínio da Ciência e da Teconologia no setor alimentício e, há mais de 40 anos, teve início no país, o oferecimento de cursos superiores na área de Engenharia e Tecnologia de Alimentos. O pimeiro curso de graduação em Engenhariade Alimentos no Brasil foi implantado em 1967, na Universidade Estadual de Campinas, seguido pela Universidade Federal de Viçosa. Atualmente, existem mais de 60 cursos de Engenharia de Alimentos, oferecidos pelas Instituições de Ensino Superior, nos vários Estados do país (conforme quadro 01).

Quadro 01. Relação das Instituições de Ensino Superior que oferecem o curso de graduação em Engenharia de Alimentos, no Brasil.

Instituição	Cidade	UF	Criação	Início do Func.	Reconhec/ Renov.	Valida de (anos)	Vagas
Universidade Estadual de Feira de Santana – UEFS	Feira de Santana	ВА	07/10/1998	01/03/1999	03/03/2004	5	40
Universidade Estadual do Sudoeste da Bahia – UESB	Itapetinga	ВА	01/06/1999	02/03/1999	30/03/2006		40
Universidade Federal do Ceará – UFC	Fortaleza	CE		01/01/1976	07/08/1984		100
Faculdades Integradas da Terra de Brasília – FTB	Brasília	DF	07/12/1999	07/12/1999	16/01/2004	-	100
Universidade Federal do Espírito Santo – UFES	Alegre	ES	16/11/2005	07/08/2006		-	40
Faculdade do Centro Leste – UCL	Serra	ES	07/12/1999	21/02/2000		-	100
Universidade Católica de Goiás – UCG	Goiania	GO	04/06/1997	01/08/1997	13/08/2003	3	240
Universidade Federal de Goiás – UFG	Goiania	GO	09/02/1999	16/04/1999	21/06/2004	3	40
Centro Federal de Educação Tecnológica de Rio Verde – CEFET	Rio Verde	GO	10/11/2006	12/02/2007		-	30

Centro Universitário de Belo Horizonte - UNI-BH	Belo Horizonte	MG	18/06/1999	02/08/1999	03/05/2004	3	100
Universidade Federal de Lavras – UFLA	Lavras	MG	08/11/1996	17/02/2003	06/11/2006	-	25
Instituto Tecnológico Regional – INTER	Montes Claros	MG	10/06/2005	01/08/2005		-	200
Faculdade de Agronomia e Zootecnia de Uberaba – FAZU	Uberaba	MG	30/12/1999	02/02/2000	07/10/2003	3	80
Universidade Federal de Viçosa – UFV	Viçosa	MG	25/11/1974	10/03/1975	19/12/1980	-	60
Universidade Federal da Grande Dourados – UFGD	Dourados	MS	16/02/2006	25/06/2006		-	30
Universidade Federal de Mato Grosso – UFMT	Pontal do Araguaia	МТ	16/01/2006	07/08/2006		-	30
Universidade Federal do Pará – UFPA	Belém	PA	16/09/1999	13/03/2000	03/02/2005	4	35
Universidade Federal da Paraíba – UFPB	João Pessoa	РВ	24/03/1977	24/03/1977	05/12/1979	-	60
Pontifícia Universidade Católica do Paraná - PUC/PR	Curitiba	PR	18/10/1988	01/03/1989	21/03/1994	-	120

Universidade Estadual do Centro-Oeste – UNICENTRO	Guarapuava	PR	17/10/1997	16/02/1998	29/11/2002	-	30
Universidade Norte do Paraná – UNOPAR	Londrina	PR	10/07/1997	09/02/1998	23/04/2003	3	80
Universidade Estadual de Maringá - UEM	Maringá	PR	30/12/1999	20/03/2000	04/08/2005	-	40
Universidade Estadual de Ponta Grossa – UEPG	Ponta Grossa	PR	24/11/1997	01/03/1998	29/11/2002	-	40
Universidade Estácio de Sá – UES	Rio de Janeiro	RJ	20/04/1995	07/08/1995	10/10/2005	-	100
Universidade Federal do Rio de Janeiro – UFRJ	Rio de Janeiro	RJ	01/07/2003	01/03/2004	-	-	40
Universidade Salgado de Oliveira – UNIVERSO	Rio de Janeiro /São Gonçalo	RJ	11/11/1987	02/02/1988	16/09/1992		80
Universidade Federal Rural do Rio de Janeiro – UFRRJ	Rio de Janeiro /Seropédica	RJ	09/08/1990	01/03/1991	20/09/2001	4	40
Universidade Federal do Rio Grande do Norte – UFRN	Natal	RN	08/07/2006	05/03/2006	-	-	30
Universidade de Caxias do Sul – UCS	Caxias do Sul	RS	25/09/2000	01/03/2001	24/03/2006	-	50

				•	•		
Universidade Regional do Alto Uruguai e das Missões – URI	Erechim	RS	25/10/1993	28/02/1994	23/12/2004	4	40
Universidade de Passo Fundo – UPF	Passo Fundo	RS	14/04/1998	05/08/1998	01/06/2006	-	55
Universidade Federal do Rio Grande do Sul – UFRGS	Porto Alegre	RS		01/03/1995	28/03/2007	-	30
Fundação Universidade Federal do Rio Grande - FURG	Rio Grande	RS	01/09/1978	01/03/1979	07/08/1985	-	
Universidade do Vale do Rio dos Sinos – UNISINOS	São Leopoldo	RS	03/12/1991	10/03/1992	23/12/2004	4	20
Universidade Comunitária Regional de Chapecó – UNOCHAPECÓ	Chapecó	SC	13/11/2002	17/02/2003	-	-	50
Universidade Federal de Santa Catarina – UFSC	Florianópolis	sc	13/10/1978	01/08/1979	31/01/1985	-	45
Centro Universitário de Jaraguá do Sul – UNERJ	Jaraguá do Sul	SC	01/07/2003	16/02/2004	-	-	50
Fundação Universidade do Estado de Santa Catarina – UDESC	Pinhalzinho	SC	11/12/2003			-	90
Univ. para o Desenvolv. do Alto Vale do Itajaí –	Rio do Sul	SC	20/12/2002	24/02/2003	26/10/2007	5	50

UNIDAVI							
Liniverside de de							
Universidade do Oeste de Santa Catarina – UNOESC	Videira	SC	17/12/2004	15/02/2005	-	-	40
Universidade Federal de Sergipe – UFS	São Cristovâo	SE	01/09/2000	16/04/2001	26/07/2006	-	40
Faculdades Adamantinense s Integradas – FAI	Adamantina	SP	05/07/2000	05/02/2001	12/04/2005	3	100
Fundação Educacional de Barretos - FEB	Barretos	SP	23/01/1980	20/05/1980	06/04/2002	5	60
Universidade Estadual de Campinas – UNICAMP	Campinas	SP	-	-	12/12/2002	5	75
Centro Regional Univ. de Espírito Santo do Pinhal – CRUEPI	Espírito Sto. do Pinhal	SP	20/09/1999	07/02/2000	14/03/2005	3	80
Fundação Educacional Fernandópolis – FEF	Fernandópolis	SP	03/06/1998	01/02/1999	08/12/2004	2	80
Faculdade de Jaguariúna – FAJ	Jaguariúna	SP	18/10/2005	30/01/2006	-	-	100
Centro Universitário Padre Anchieta/ UNIANCHIETA	Jundiaí	SP	01/08/2007	01/02/2008	-	-	240
Universidade de Marília –	Marília	SP	30/05/1996	01/02/1997	28/03/2007	-	100

LINUAAA		l	T		T	T	
UNIMAR							
Universidade de São Paulo – USP	Pirassununga	SP	27/06/2000	01/01/2001	-	-	50
Universidade de Ribeirão Preto – UNAERP	Ribeirão Preto	SP	01/02/2005	11/02/2008	-	-	60
Universidade Metropolitana de Santos – UNIMES	Santos	SP	18/04/1996	01/02/1997	28/03/2007	-	80
Centro Univ. do Instituto Mauá de Tecnologia - CEUN-IMT	São Caetano do Sul	SP	03/10/1985	10/02/1986	05/07/2006	-	80
União das Faculdades dos Grandes Lagos – UNILAGO	São José do Rio Preto	SP	18/07/2000	02/02/2001	-	-	100
Universidade Estadual Paulista – UNESP	São José do Rio Preto	SP	27/12/1983	27/12/1983	02/06/1988	-	30
Universidade do Vale do Vale do Paraíba – UNIVAP	São José dos Campos	SP	30/08/2005	20/01/2006	-	-	60
Universidade Metodista de Piracicaba – UNIMEP	Santa Bárbara do Oeste	SP	20/10/1999	22/02/1999	17/11/2004	4	80
Universidade de Taubaté – UNITAU	Taubaté	SP	17/09/2002	19/02/2003	-	-	80
Universidade Federal do Tocantins - UFT	Palmas	то	01/11/1999	14/02/1995	27/06/2003	3	80

Fonte : Cadastro das Instituições de Ensino Superior - INEP - MEC.

O Estado do Amazonas conta com uma população de aproximadamente 3,0 milhões de habitantes, e mais de 50% desta população são jovens e adultos. Manaus, sua capital possui uma

população de 1.802.525 (Censo IBGE, 2010), com um PIB de R\$ 40,4 bilhões (2009) sendo as principais atividades econômicas: indústria (Pólo Industrial de Manaus) e comércio. O Índice de Desenvolvimento Humano (IDH) de 0,737 é considerado alto (PNUD - 2010), a taxa de alfabetização é de 97,63 (2008). Está em 7º lugar no ranking de maior PIB brasileiro, representando mais de 60% da população total do Estado.

A composição do PIB no Estado do Amazonas é formada por 56,9% oriundos da indústria e apenas 2,7% da agropecuária. Temos aqui, um vasto campo de trabalho para os egressos desse curso nas indústrias do ramo de alimentos e alimentação. Não somente nas já existentes, mas também, com a possibilidade de implantação de novas agroindústrias em setores estratégicos. Isso criará novas oportunidades de atuação desses profissionais refletindo na dinamização do setor agropecuário da região Amazônica.

A proposta de criação e implantação do Curso de Engenharia de Alimentos na Universidade Federal do Amazonas surge num contexto, que teve como seu embrião, quando em 1975 foi autorizado pelo Ministério da Educação e Cultura (MEC) a criação do Curso de Agronomia, que para sua implantação a Fundação Universidade do Amazonas (FUA), mantenedora da Universidade do Amazonas (UA) que posteriormente passou a ser Universidade Federal do Amazonas (UFAM) contou com o apoio do Departamento de Assuntos Universitários (DUA/MEC), através da Unidade Central de Avaliação e Planejamento (UCAP), que gerenciou os Programas de Ciências Agrárias.

A partir de fevereiro de 1977, o MEC colocou à disposição da UFAM um especialista para assessorá-la na implantação do Curso, em âmbito local. Esta implantação, também, foi apoiada pelo Programa de Desenvolvimento do Ensino de Ciências Agrárias (PRODECA). Na mesma época, a FUA firmou um convênio com a Escola Superior de Agricultura de Lavras (UFLA), cujo objetivo foi a capacitação de docentes, treinamento de laboratoristas e a implantação da base física, atual Fazenda Experimental, para atender as necessidades do Curso.

Na então Universidade do Amazonas, o Curso de Agronomia foi criado pela Resolução nº 12/76 do Egrégio Conselho Universitário (CONSUNI), e inicialmente administrado pela Faculdade de Tecnologia.

Com a criação do Departamento de Ciências Agrárias (DCA), Resolução nº 17/77 do CONSUNI, o curso passou a ser administrado Instituto de Ciências Biológicas (ICB). Posteriormente, com a criação da Faculdade de Ciências Agrárias (FCA), Resolução nº 009/88 CONSUNI, o curso ficou definitivamente vinculado nesta Unidade Acadêmica.

A Engenharia de Alimentos é uma área de conhecimento específica. Capaz de englobar todos os elementos relacionados com a industrialização de alimentos. Pode através do profissinal

com esta formação, potencializar o desenvolvimento deste ramo em todos os níveis. Isto envolve a formação de recursos humanos, subsídios à elaboração de políticas públicas, desenvolvimento científico e tecnológico, atuação em empresas do setor, colaboração na preservação da saúde pública (normatização técnica, orientação e fiscalização).

Atualmente a profissão de Engenheiro de Alimentos está muito difundida, principalmente nos países mais industrializados, onde desempenha cada vez mais atividades relacionadas com excelência. Há que se ressaltar, no caso desses países, existem muitas oportunidades de intercâmbio com o Brasil, possibilitando o contato com tecnologias de ponta, para posterior adaptação às nossas condições.

A Engenharia de Alimentos é uma área de conhecimento de caráter multidisciplinar. Abrange diversas áreas do conhecimento humano, mas principalmente, as Ciências Agrárias (Processamento de produtos de Origem animal e vegetal, Controle de Qualidade, Matérias-primas, entre outros), Ciências Exatas (Matemática Aplicada, Físico-Química, Termodinâmica, Operações Unitárias) e Ciências Biológicas (Bioquímica, Microbiologia, Nutrição, Matérias Primas).

O caráter multidisciplinar desta profissão é consequência do tipo de informações necessárias para o domínio da tecnologia de processamento dos alimentos. No seu campo de intervenção faz-se necessário conhecer com profundidade todos os processos de transformação dos alimentos quanto:

- aos diferentes tipos (carnes, frutas, hortaliças, laticínios, grãos, etc);
- à sua composição (proteínas, açúcares, vitaminas, lipídios, etc.);
- à sua microbiologia (microorganismos característicos, deterioração, etc.);
- às suas características sensoriais (sabor, textura, aroma, etc.)

E as diversas técnicas e processos de:

- beneficiamento (moagem, extração de polpas, de sucos, de óleos, etc.);
- tratamentos térmicos (pasteurização, esterilização, congelamento, liofilização, etc.);
- biotecnologia (fermentação, tratamentos enzimáticos, etc.);
- emprego de ingredientes e matérias primas visando a promoção da correta interação entre processos e alimentos através :
- Controle das condições que proporcionam os padrões de qualidade desejados;
- Evolução de técnicas tradicionais;
- E a viabilização de produtos inéditos no mercado.

A Lei Federal nº 5194, de 24 de dezembro de 1966, regulamenta o exercício da profissão de Agrônomos; Engenheiros e Arquitetos no Art.19,Inciso Iregulamenta as atribuições de Engenheiro Tecnólogo de Alimentos.

I –"o desempenho das atividades 01 a 18 do artigo 1º desta Resolução, referentes à indústria de alimentos; acondicionamento, preservação, distribuição, transporte e abastecimento de produtos alimentares; seus serviços afins e correlatos".

A Resolução 1010/2005 de 22 de agosto de 2005, do sistema CREA/CONFEA, Considerando o Decreto nº 23.569, de 11 de dezembro de 1933;o Decreto-Lei nº 8.620, de 10 de janeiro de 1946; o Decreto nº 23.569, de 1933; o Decreto nº 92.530, de 9 de abril de 1986 que regulamenta a Lei nº 7.410, de 1985; a Lei nº 7.270, de 10 de dezembro de 1984; a Lei nº 9.394, de 20 de dezembro de 1996, que estabelece as diretrizes e bases da educação nacional; o Decreto nº 5.154, de 23 de julho de 2004, que regulamenta o § 2º do art. 36 e os arts. 39 a 41 da Lei nº 9.394, de 1996; a Lei nº 9.131, de 24 de novembro de 1985, que altera dispositivos da Lei nº 4.024, de 20 de dezembro de 1961, no Art. 1º Estabelece normas, estruturadas dentro de uma concepção matricial, para a atribuição de títulos profissionais, atividades e competências no âmbito da atuação profissional, para efeito de fiscalização do exercício das profissões inseridas no Sistema CONFEA/CREA. No Parágrafo único diz que as profissões inseridas no Sistema CONFEA/CREA são as de engenheiro, de arquiteto e urbanista, de engenheiro agrônomo, de geólogo, de geógrafo, de meteorologista, de tecnólogo e de técnico.

O seu currículo mínimo foi estabelecido na nova concepção de ensino de Engenharia no Brasil nas resoluções do Conselho Federal de Educação 48/76 e 52/76 e Portaria 1695/94 do Ministério da Educação e dos Desportos.

Em função das novas demandas do mercado, na década de 80, os cursos de engenharia do Brasil passaram por uma reformulação, mudando seu conjunto de disciplinas e ementas. Dentro dessa realidade, em 1996, o Governo Federal propôs a flexibilização da estrutura curricular através da nova Lei de Diretrizes e Bases da Educação Nacional.

A portaria nº 1695, de 5 de dezembro de 1994, do Ministério da Educação e do Desporto (MEC) estabeleceu que a Engenharia de Alimentos é uma habilitação específica do Curso de Engenharia, e está regulamentada pela resolução nº 11, de 11 de março de 2002 do CNE/CES, do MEC que diz:

"Art. 1º A presente Resolução institui as Diretrizes Curriculares Nacionais do Curso de Graduação em Engenharia, a serem observadas na organização curricular das Instituições do Sistema de Educação Superior do País.

Art. 2º As Diretrizes Curriculares Nacionais para o Ensino de Graduação em Engenharia definem os princípios, fundamentos, condições e procedimentos da formação de engenheiros, estabelecidas pela Câmara de Educação Superior do Conselho Nacional de Educação, para aplicação em âmbito nacional na organização, desenvolvimento e avaliação dos projetos pedagógicos dos Cursos de Graduação em Engenharia das Instituições do Sistema de Ensino Superior."

1.1.2. Formação de Pessoal e Mercado

Pode-se de forma genérica admitir que, no Amazonas, a atividade do ramo da Indústria Alimentícia apresenta diferentes sistemas de produção, que podem ser de pequena ou de larga escala. Todos eles associados a diferentes cadeias produtivas envolvendo a conservação, beneficiamento e produção de alimentos industrializados. Se os primeiros são voltados predominantemente para atender a demanda local, o último se destina, para o mercado regional e nacional, com um apelo da biodiversidade da Amazônia.

Em qualquer uma destas formas de produção, observa-se que nem sempre as práticas adotadas se subordinam a procedimentos técnicos utilizando a tecnologia disponível. E isto pode ser verificado principalmente com à produção em pequena escala, podendo ser, em parte, explicada pela falta de profissionais devidamente qualificados e disponibilizados na região, em conformidade com os padrões nacionais.

São vários os fatores que determinam a eficiência e qualidade de uma industrialização de produtos oriundos da agricultura na região Amazônica. Estes fatores envolvem aspectos, culturais, sociais e econômicos, e, de profissionais qualificados na própria região.

A alta diversidade de matérias primas provenientes da agricultura exigem que as técnicas de industrialização estejam em profunda adequação com as características intrínsicas de cada uma delas. Os processos de fabricação resultantes de produção de alimentos processados com elevada qualidade e em quantidade, devem ser independentes do modelo de industrialização, se em pequena ou em grande escala.

A produção de agrícola é prática bastante disseminada no espaço amazônico. Entretanto, O baixo nível de agregação tecnológica dos produtos agrícolas acarreta problemas de transporte e comercialização com consequentes perdas e desmotivação dos produtores rurais.

1.1.3. Campos de Atuação Profissonal

O propósito do Curso de Engenharia de Alimentos é preparar profissionais capazes de desempenhar as atividades de Engenharia dentro das Indústrias do ramo da Alimentação, desenvolvendo projetos e processos produtivos, a partir das características de qualidade dos produtos, objetivando a otimização dos recursos e aumento da produtividade. Dessa forma, além da formação básica (Ciências Exatas e Biológicas), o curso oferece disciplinas na área de Ciências Humanas, visando introduzir os conceitos administrativos para as atividades de gerenciamento.

Além das Indústrias Alimentícias, o profissional da Engenharia de Alimentos, está habilitado para atuar em Empresas de Prestação de Serviços, Orgãos e Instituições Públicas e como empreendedor.

O profissional da Engenharia de Alimentos exerce suas atividades nas seguintes áreas:

Produção/Processos

Racionalização e melhoria de processos e fluxos produtivos para o incremento da qualidade e produtividade e para a redução dos custos industriais, bem como, do tratamento de resíduos da indústriade alimentos.

Garantia de Qualidade

Determinação dos padrões de identidade e qualidade dos alimentos (desde a matéria prima ao produto acabado, transporte do produto final, exposição e comercialização), controle dos processos de industrialização, planejamento e implantação de estruturas para o monitoramento da qualidade dos produtos.

Pesquisa Desenvolvimento

Desenvolvimento de novos produtos e tecnologias com o objetivo de atingir satisfazer e atingir novosmercados, otimização da produção de forma a reduzir desperdícios, reutilização de subprodutos e transformação de subprodutos em alimentos com maior valor agregado utilizando tecnologias limpas.

Projetos

Planejamento, execução e implantação de projetos de unidades de processamento de alimentos (planta, lay-out, instalações industriais, equipamentos), bem como, seu estudo de viabilidade econômica.

Comercial/Marketing

Utilização do conhecimento técnico como diferencial de marketing na prospecção e abertura de mercados, na assistência técnica, no desenvolvimento de produtos junto a clientes e no apoio à área de vendas.

Fiscalização de Alimentos e Bebidas

Atuação junto a órgãos governamentais de âmbito municipal, estadual e federal, objetivando garantir o cumprimento de padrões de identidade e qualidade de produtos alimentícios estabelecidos pela legislação, garantindo assim, os direitos do consumidor e a saúde pública.

1.1.4. Regulamento e Registro da Profissão

O egresso do curso de Engenharia de Alimentos tem como órgão gerenciador e fiscalizador da profissão o Sistema CREA/CONFEA, conforme mencionando anteriormente, e que estabelecem as atribuições profissionais de engenheiros e engenheiros agrônomos.

1.1.5. Perfil do Profissional a ser formado

O egresso do Curso de Engenharia de Alimentos terá o perfil do profissional, na categoria de bacharel, no grau de Engenheiro de Alimentos com formação eclética para atuação em diversas funções, sólidos conhecimentos básicos, científicos e tecnológicos relacionados aos processos e sistemas de produção de alimentos industrializados em pequena e larga escala e outras formas de uso das matérias primas agropecuárias para fins alimentícios.

Ser capacitado e consciente de que o exercício profissional requer atualização contínua; capacidade para tomar decisões em empresas, cooperativas, associações e outras formas de organizações; ter espírito crítico e empreendedor, ser capaz de trabalhar em equipe, e ter uma sólida formação ética e humanista baseada nos princípios e valores que dignificam o ser humano e vêm a requerer permanente exercício de reconstrução de conceitos e paradigmas.

Este profissional dominará também, conceitos e instrumentos básicos voltados aos processos de Informação, Educação e Pedagogia, para ser generalista e hábil para diagnosticar problemas e propor soluções inovadoras de forma participativa, em sintonia com as necessidades e realidades locais. Comunicar-se corretamente, usando com eficácia todos os recursos tecnológicos disponíveis; gerar, aplicar e difundir conhecimentos científicos e tecnológicos e, analisar políticas de alimentação de cunho nacional e local.

Mediante a evidente redução de emprego no setor público deve estar preparado para empregar-se no setor privado ou conquistar o seu próprio espaço de trabalho como empreendedor, sócio de grupos cooperativos ou agentes privados de assistência técnica e consultoria.

1.1.6. Competências Gerais/ Habilidades/Atitudes/Valores

O curso de Engenharia de Alimentos deverá dar condições para que os seus graduandos possam adquirir as competências e habilidades apresentadas a seguir:

- Projetar, coordenar, analisar, fiscalizar, assessorar, supervisionar e especificar técnica e economicamente projetos no setor agroalimentar, aplicando padrões, medidas e controle de qualidade;
- Realizar vistorias, perícias, avaliações, arbitramentos, laudos e pareceres técnicos, com condutas, atitudes e responsabilidade técnica e social, respeitando a fauna e a flora e promovendo a conservação e/ou utilização das matérias primas agropecuárias para uso na

alimentação, recuperação da qualidade do, do ar e da água, com uso de tecnologias integradas e sustentáveis do ambiente;

- Atuar na organização e gerenciamento empresarial interagindo e influenciando nos processos decisórios de agentes e instituições, na gestão de políticas de alimentação e produção de alimentos;
- Produzir, conservar e comercializar alimentos, e outros produtos agropecuários;
- Participar e atuar em todos os segmentos das cadeias produtivas de alimentos;
- Exercer atividades de docência, pesquisa e extensão no ensino técnico profissional, ensino superior, pesquisa, análise, experimentação, ensaios e divulgação técnica e extensão;
- Enfrentar os desafios das rápidas transformações da sociedade, do mundo, do trabalho, adaptando-se às situações novas e emergentes.
- Atuar desenvolvimento tecnológico e aproveitamento sustentável das matérias primas regionais.

1.1.7. Objetivos do Curso

Geral

Formar profissionais com competências e habilidades para exercer atividades técnicas, científicas e administrativas desde a caracterização e controle das matérias primas até a comercialização do produto final, passando pelo controle, planejamento, projeto e desenvolvimento de produtos e processos, para que alimentos de qualidade e inócuos sejam produzidos ou conservados com o objetivo de diminuir perdas, minimizar custos e suprir demandas em situações diversas.

Específicos

As diversas atividades didáticas programadas para os estudantes do Curso de Engenharia de Alimentos visam capacitá-los para torná-los capazes de atender às atribuições dos Engenheiros definidas pelo Conselho Federal de Engenharia, Arquitetura e Agronomia – CONFEA através da Resolução nº 1.010, de 22 de agosto de 2005, listadas a seguir, com enfâse na área de alimentos:

- Desenvolver atividades de Gestão, supervisão, coordenação, orientação técnica;
- Fazer coleta de dados, estudo, planejamento, projeto, especificação;
- Realizar estudo de viabilidade técnico-econômica e ambiental;
- Dominar processos de assistência, assessoria, consultoria;
- Exercer direção de obra ou serviço técnico;
- Demonstrar capacidade para vistoria, perícia, avaliação, monitoramento, laudo, parecer técnico, auditoria, arbritagem;

- Desempenhar cargo ou função técnica;
- Realizar atividades de Treinamento, ensino, pesquisa, desenvolvimento, análise, experimentação, ensaio, divulgação técnica, extensão;
- Elaborar orçamento;
- Realizar atividades de Padronização, mensuração, controle de qualidade;
- Executar obra ou serviço técnico;
- Fiscalizar obra ou serviço técnico;
- Elaborar produção técnica e especializada;
- Coordenarequipe de instalação, montagem, operação, reparo ou manutenção;
- Executar instalação, montagem, operação, reparo ou manutenção;
- Realizar operação, manutenção de equipamento ou instalação;

1.2. Estrutura e Funcionamento do Curso

1.2.1. Titulação

Ao egresso do curso de Engenharia de Alimentos é conferido o grau de Engenheiro de Alimentos, por meio do diploma e visam capacitá-los para torná-los capazes de atender às atribuições dos Engenheiros (Resolução nº 1.010, de 22 de agosto de 2005).

1.2.2. Modalidades

O curso de Engenharia de Alimentos é todo formatado na modalidade de Bacharelado, com generalização nas diferentes áreas de conhecimento, com enfâse na área de alimentos.

1.2.3. Número de vagas oferecidas pelo curso

Caracterização do Curso de Engenharia de Alimentos

Características qualitativas e quantitativas

Número de vagas oferecidas por ano:42

Número quantitativo de ingressos via:

Processo Seletivo Macro (ENEN):21

Processo Seletivo Continuo (PSC):21

Transferência ex-offício: variável

Transferência Facultativa (PSE): variável

Portador de Diploma (PSE):	variável
Turno de Funcionamento:	integral
Tempo Mínimo para conclusão do curso:	05 anos
Tempo Máximo para conclusão do curso:	08 anos
Número Mínimo de horas por período:	330
Número Máximo de horas por período:	240*

Obs*: Devido a carga horária das disciplinas "Trabalho de Conclusão de Curso" e "Estágio Curricular Supervisionado".

1.2.4 Alinhamento do curso às Diretrizes Curriculares Nacionais

O Curso de Engenharia de Alimentos da UFAM cumpre com as Diretrizes Curriculares Nacionais para os Cursos de Engenharia, que estabelecem o perfil desejado dos egressos, suas competências e habilidades, a estrutura do curso e conteúdos curriculares.

Segundo as Diretrizes Curriculares o perfil dos egressos de um curso de engenharia deve compreender uma sólida formação técnico científica e profissional geral que capacite o egresso a desenvolver as atividades previstas para a profissão de Engenheiro de Alimentos.

O caráter multidisciplinar da profissão é conseqüência do tipo de informações necessárias para o domínio da tecnologia de processamento dos alimentos.

Conforme as Diretrizes Nacionais para os cursos de Engenharia, o currículo do curso de Engenharia de Alimentos da UFAM fornece condições a seus egressos para adquirir competências e habilidades para:

- a) aplicar conhecimentos matemáticos, científicos, tecnológicos e instrumentais à engenharia;
- b) projetar e conduzir experimentos e interpretar resultados;
- c) conceber, projetar e analisar sistemas, produtos e processos;
- d) planejar, supervisionar, elaborar e coordenar projetos e serviços de engenharia;
- e) identificar, formular e resolver problemas de engenharia;
- f) desenvolver e/ou utilizar novas ferramentas e técnicas;

- g) supervisionar a operação e a manutenção de sistemas;
- h) avaliar criticamente a operação e a manutenção de sistemas;
- i) comunicar-se eficientemente nas formas escrita, oral e gráfica;
- j) atuar em equipes multidisciplinares;
- k) compreender e aplicar a ética e responsabilidade profissionais;
- I) avaliar o impacto das atividades da engenharia no contexto social e ambiental;
- m) avaliar a viabilidade econômica de projetos de engenharia;
- n) assumir a postura de permanente busca de atualização profissional.

Além destas competências e habilidades, existem aquelas específicas do curso, que são detalhadas no item "Perfil do Egresso" deste Projeto Pedagógico, e no item "Atividades do Curso" são especificadas as atividades previstas para garantir o perfil desejado do egresso.

Os conteúdos curriculares também estão em conformidade com as Diretrizes Nacionais, que estabelecem que todos os cursos de Engenharia, independente de sua modalidade, devem possuir em seu currículo um núcleo de conteúdos básicos, um núcleo de conteúdos profissionalizantes e um núcleo de conteúdos específicos que caracterizem a modalidade.

O núcleo de conteúdos básicos, cerca de 30% da carga horária mínima, versa sobre os tópicos estabelecidos nas Diretrizes Nacionais (Metodologia Científica e Tecnológica; Comunicação e Expressão; Informática; Expressão Gráfica; Matemática; Física; Fenômenos de Transporte; Mecânica dos Sólidos; Eletricidade Aplicada; Química; Ciência e Tecnologia dos Materiais; Administração; Economia; Ciências do Ambiente; Humanidades, Ciências Sociais e Cidadania).

Nos conteúdos de Física, Química e Informática, é obrigatória a existência de atividades de laboratório. Nos demais conteúdos básicos, também são previstas atividades práticas e de laboratórios, dependendo da necessidade e escopo das atividades.

O núcleo de conteúdos profissionalizantes, que conforme as Diretrizes Nacionais são de cerca de 15% de carga horária mínima, versa sobre os seguintes tópicos (subconjunto de tópicos especificados nas DCN): Bioquímica; Ciência dos Materiais; Físico-química; Gestão Ambiental; Gestão Econômica; Instrumentação; Métodos Numéricos; Microbiologia; Operações Unitárias; Processos de Fabricação; Processos Químicos e Bioquímicos; Qualidade; Termodinâmica Aplicada.

O núcleo de conteúdos específicos se constitui em extensões e aprofundamentos dos conteúdos do núcleo de conteúdos profissionalizantes, bem como de outros conteúdos destinados a caracterizar modalidades. Estes conteúdos, consubstanciando o restante da carga horária total, constituem-se em conhecimentos científicos, tecnológicos e instrumentais necessários para a definição das modalidades de engenharia e devem garantir o desenvolvimento das competências e habilidades estabelecidas nas DCN.

As disciplinas do currículo do Curso de Engenharia de Alimentos da UFAM que abordam os tópicos especificados nos núcleos de conteúdos básicos, profissionalizantes e específicos podem ser visualizados, no item "Matriz Curricular" deste Projeto Pedagógico.

Para o caso específico da formação do Engenheiro de Alimentos, segundo as Referências Curriculares Nacionais do MEC devem ser abordados os seguintes temas: Bioquímica; Química e Bioquímica de Alimentos; Físico-Química; Modelagem, Análise e Simulação de Sistemas; Fenômenos de Transporte; Termodinâmica; Química Analítica; Microbiologia de Alimentos; Análise Sensorial; Tecnologia e Processamento de: Carnes, Laticínios, Cereais, Vegetais; Processos de Conservação; Embalagens; Toxicologia; Tratamento de Efluentes e Disposição de Resíduos da Indústria de Alimentos; Higiene e Sanificação; Controle de Qualidade; Operações Unitárias; Projeto da Indústria de Alimentos; Matemática; Física; Química; Ética e Meio Ambiente; Ergonomia e Segurança do Trabalho; Relações Ciência, Tecnologia e Sociedade. O curso de Engenharia de Alimentos da UFAM aborda estes temas nas diferentes disciplinas, atendendo assim às especificações do MEC.

O curso de Engenharia de Alimentos da UFAM também atende às Diretrizes Curriculares Nacionais no que se refere a estágio curricular, que deve ser uma atividade obrigatória, com uma duração mínima de 160 horas e são supervisionados pela instituição de ensino. O estágio curricular obrigatório do curso possui carga horária mínima de 180 horas.

O MEC estabelece também a obrigatoriedade do trabalho final de curso como atividade de síntese e integração de conhecimento. Neste contexto, o curso de Engenharia de Alimentos exige o Trabalho de Conclusão de Curso como uma atividade obrigatória, sendo prevista.

Deverão também ser estimuladas atividades complementares, tais como trabalhos de iniciação científica, projetos multidisciplinares, visitas técnicas, trabalhos em equipe, desenvolvimento de protótipos, monitorias, participação em eventos científicos, participação em empresas juniores e outras atividades empreendedoras. Nestas atividades procurar-se-á desenvolver posturas de cooperação, comunicação e liderança.

Estas atividades estão previstas no currículo do Curso de Engenharia de Alimentos da UFAM de forma obrigatória como "Atividades Complementares", sendo descritas no item correspondente deste Projeto Pedagógico.

Segundo a Resolução CP/CNE nº 1, de 17 de junho de 2004 (DOU nº 118, 22/06/2004, Seção 1, p.11), que institui as diretrizes nacionais para a educação das relações étnico-raciais e para o ensino de história e cultura afro-brasileira e africana, a serem observadas por todas as Instituições de Ensino Superior (IES), a Educação das Relações Étnico-Raciais tem por objetivo a divulgação e produção de conhecimentos, bem como de atitudes, posturas e valores que eduquem cidadãos quanto à pluralidade étnico-racial, tornando-os capazes de interagir e de negociar objetivos comuns que garantam, a todos, respeito aos direitos legais e valorização de identidade, na busca da consolidação da democracia brasileira.

O Curso de Engenharia de Alimentos, seguindo as Diretrizes Curriculares Nacionais, propõe Atividades Étnico-Raciais, como atividades complementares do curso e disciplina que aborde os temas propostos:

- No dia 20 de novembro será celebrado o Dia Nacional da Consciência Negra,com atividade cultural e palestra.
- Disciplina optativa de Responsabilidade Social e Meio Ambiente, no formato de palestras e oficinas (Resolução CP/CNE nº 1, de 17 de junho de 2004 (DOU nº 118, 22/06/2004, Seção 1, p.11).

1.2.5 Alinhamento do Curso ao Projeto Pedagógico Institucional

O Estatuto da UFAM afirma que a finalidade precípua da Universidade é "a educação superior e a produção de conhecimento filosófico, científico, artístico e tecnológico integradas no ensino, na pesquisa e na extensão".

Em respeito à trajetória histórica da UFAM, a direção a percorrer é indicada necessariamente pela busca da excelência na contribuição da Universidade para o desenvolvimento da sociedade e sua responsabilidade em manter-se inserida em sua comunidade, atuando como fator de propulsão de seu desenvolvimento.

A excelência buscada pela UFAM reside necessariamente na articulação entreas três atividades-fins universitárias: o Ensino (Graduação, Pós-Graduação e Ensino Básico), a Pesquisa e a Extensão.

O curso de Engenharia de Alimentos alinha-se ao Projeto Pedagógico Institucional (PPI) da UFAM nos seguintes tópicos, previstos no PPI:

- a) incentivo às inovações curriculares que proporcionem flexibilidade na formação dos graduandos;
- b) aperfeiçoamento curricular pela incorporação cada vez mais orgânica de atividades complementares que possibilitem ao aluno a integração com outras áreas de conhecimento;
- c) empenho institucional em proporcionar trocas entre os saberes das diferentes áreas de conhecimento;
 - d) incentivo a programas e projetos que integrem alunos da graduação e da pósgraduação.
- e) universalização dos cursos de graduação como espaço de estágio de docência de alunos de programas de pós-graduação *stricto sensu* da Universidade.
- f) consolidação do ensino de graduação como reflexo do conhecimento desenvolvido pela pesquisa e pela extensão, institucionalmente desenvolvidas na UFAM, de modo a superar um processo que se restrinja à mera transmissão de conhecimentos acumulados pela humanidade;
- g) promoção de programas institucionais de intercâmbio dos alunos do curso como grupos de pesquisa da Universidade, além do já consagrado Programa de Iniciação Científica;
- h) promoção institucional da mobilidade acadêmica, nacional e internacional, na forma de intercâmbios, estágios e programas de dupla diplomação;
- i) manutenção de um programa permanente de aperfeiçoamento pedagógico dos docentes, valorizado, inclusive, nos processos de progressão funcional;
 - j) incentivo à inovação pedagógica visando a uma postura cada vez mais ativa do aluno;
- k) promoção de um programa institucional de integração de novas tecnologias nas atividades didáticas, inclusive integrando a educação à distância no curso;
- I) criação e manutenção de um programa de atendimento psicopedagógico dos discentes de forma a contribuir para a permanência dos alunos no curso, diminuindo o represamento do processo formativo e reduzir os índices de evasão, bem como o incentivo a novas possibilidades de experiências acadêmicas;
- m) criação e manutenção de um programa de inclusão de alunos com necessidades especiais, com especificidades culturais, e aqueles ingressantes a partir de políticas de ações afirmativas;
- n) articulação das políticas de ensino com as políticas de assistência estudantil;

o) compromisso com o aumento da oferta de vagas no curso, buscando formas de fazê-lo garantindo a qualidade acadêmica, através da incorporação de novas metodologias de ensino, bem como do aumento do quadro docente e técnico-administrativo, além da melhoria de sua infraestrutura predial e tecnológica;

p) promoção de uma política de ocupação plena das vagas oferecidas no curso de Engenharia de Alimentos, com a aplicação de mecanismos como transferência de alunos de outras instituições de ensino superior, de ingresso de diplomados e transferência interna, acompanhada de uma política inclusiva e flexível de aproveitamento de estudos já realizados por esses alunos;

q) avaliação institucional permanente das atividades de graduação como um dos parâmetros de avaliação da própria Universidade.

1.2.6 Turno de funcionamento

O turno de funcionamento do curso é diurno (manhã e tarde), porém existem disciplinas que também poderão vir a ser oferecidas no turno da noite e em parceria com as diversas unidades acadêmicas dentro da UFAM.

1.2.7 Forma de organização do calendário acadêmico

O Calendário Escolar da Universidade é proposto pela Reitoria e homologado pelo Conselho de Ensino, Pesquisa e Extensão (CONSEPE), e deve consignar, anualmente, as datas e prazos estabelecidos para as principais atividades acadêmicas.

Conforme a Resolução 17/2007 do CONSEPE, o ano acadêmico compreende dois períodos letivos regulares, com duração mínima de 108 (cento e oito) dias úteis cada um. O Calendário Escolar da Universidade é publicado até o dia 30 de outubro do ano anterior ao de sua vigência.

Em cada ano acadêmico, deve ser reservada uma semana não letiva, que se denomina Semana Acadêmica, para atividades de caráter científico, técnico ou cultural, com a participação conjunta dos corpos docente, discente e técnico integrando ensino,pesquisa e extensão com a comunidade.

A Semana Acadêmica do Curso de Engenharia de Alimentos (SEMEA) acontecerá no segundo semestre letivo do ano, na semana prevista para tal pelo calendário acadêmico.

1.3 MATRIZ

1.3.1 Eixos Estruturantes do Desdobramento Curricular - Núcleo Comum

NÚCLE	O COMUM DA FORMAÇÃO		
EIXOS ESTRUTURANTES	DISCIPLINAS	CR	СН
Metodologia Científica e Tecnológica	Metodologia do Trabalho Científico	3	60
Comunicação e Expressão	Português Instrumental	4	60
Informática	Informática Instrumental	3	60
Expressão Gráfica	Desenho Básico	3	60
	Cálculo I	6	90
	Cálculo II	6	90
Matemática	Equações Diferenciais Ordinárias	4	60
	Álgebra Linear I	4	60
	Bioestatística	4	60
Física	Física I	5	75
	Física II	5	75
Eletricidade Aplicada	Fundamentos de eletricidade e instalações elétricas na indústria de alimentos	3	60
	Química Geral I	4	60
Química	Química Analítica Aplicada	3	60
	Química Orgânica Básica	4	60
Humanidades, Ciências Sociais e	Sociologia do Trabalho	2	45
Cidadania	Introdução à Engenharia de Alimentos	2	30
Ciências do Ambiente	Água, resíduos e efluentes na indústria de alimentos	3	60
	Engenharia e Ciência do Ambiente	3	60
	Subtotal	71	1185

1.3.2. Eixos Estruturantes do Desdobramento Curricular-Núcleo Profissionalizante

NÚCLEO PROFISSIONALIZANTE					
EIXOS ESTRUTURANTES	DISCIPLINAS	CR	СН		
D. ()	Bioquímica de Geral	3	60		
Bioquímica	Bioquímica de Alimentos	3	60		
	Fisico-química I	4	60		
Físico-química	Físico-química experimental	2	60		
	Balanço de material e energético	3	60		
	Metrologia e Instrumentação	4	60		
Gestão Ambiental	Engenharia de Segurança	3	60		
	Normalização e Sistemas de Gestão Industrial	3	60		
Migrobiologio	Microbiologia Geral	3	60		
Microbiologia	Microbiologia de Alimentos	3	60		
	Operações Unitárias I	3	60		
Operações Unitárias	Operações Unitárias II	3	60		
	Operações Unitárias III	3	60		
Processos Químicos e	Engenharia Bioquímica	3	60		
Bioquímicos	Biotecnologia Aplicada à Indústria de Alimentos	2	45		
	Fenômenos de Transporte I	4	60		
	Fenômenos de Transporte II	4	60		
Fenômenos de Transporte	Fenômenos de Transporte III	4	60		
	Laboratório de Fenômenos de Transporte	2	60		
	Economia e Administração Agroindustrial	3	60		
A desirable to a 2 c	Empreendedorismo e Marketing no Agronegócio	2	45		
Administração	Consultoria em Segmentos de Alimentação	3	60		
	Planejamento e Projetos na Indústria de Alimentos	3	60		
Termodinâmica Aplicada	Termodinâmica	3	60		
Subtotal		73	1410		

1.3.3 Eixos Estruturantes do Desdobramento Curricular- Núcleo Específico

	NÚCLEO ESPECÍFICO						
EIXOS ESTRUTURANTES	DISCIPLINAS	CR	СН				
	Química de Alimentos	3	60				
Química de Alimentos	Análise de Alimentos	3	60				
	Análise Sensorial de Alimentos	3	60				
	Processamento de Frutas e Hortaliças	3	60				
	Processamento de Leite e derivados	3	60				
Controle de Qualidade/Processo de	Processamento de Carnes e derivados	3	60				
Fabricação	Processamento de Cereais e Oleaginosas	3	60				
	Processamento de Pescados e derivados	3	60				
	Instalações e instrumentação industrial	3	60				
Instrumentação	Instrumentação e controle de processos	3	60				
Nutrição	Alimentos: Qualidade, Saúde e Nutrição	2	45				
Embalagens	Materiais e Embalagem para Alimentos	3	60				
	SUBTOTAL	35	705				

1.3.4 Eixos Estruturantes do Desdobramento Curricular- Núcleo Complementar

	Trabalho de Conclusão de Curso	4	60
Práticas Profissionais	Estágio Curricular Supervisionado	6	180
	- stages consenses out of the stages of the stage of the stages of the stages of the stages of the stage of the stages of the stage of the st		
Exame Nacional de Desempenho dos Estudantes – ENADE	Lei nº 10.861, de 14 de abril de 2004	1	-
	Subtotal	10	240
	182	3.480	
	Carga Horária Optativas	09	180

Carga Horária AACC	-	90
CARGA HORÁRIA TOTAL	191	3.750

Obs*: O aluno necessita ter cursado e estar aprovado, no mínimo, em 70% das disciplinas obrigatórias da matriz curricular do Curso de Engenharia de Alimentos para poder estar apto a cursar as disciplinas Trabalho de Conclusão de Curso e Estágio Curricular Supervisionado.

1.3.5 Eixos Estruturantes do Desdobramento Curricular-Núcleo Complementar Optativo

NÚ	CLEO COMPLEMENTAR OPTATIVO		
EIXOS ESTRUTURANTES	DISCIPLINAS	CR	СН
Matérias Primas	Caracterizaçãoe Pré-Processamento de Grãos	4	60
Agropecuárias	Caracterização e Pré-Processamento de Ovos	4	60
	Gestão de Qualidade	4	60
	Toxicologia de Alimentos	4	60
	Segurança dos Alimentos	4	60
Gestão de Qualidade Tecnológica e Projetos	Segurança Industrial	4	60
Tooriologica o'Trojotoo	Termobacteriologia Aplicada a Alimentos	4	60
	Instalações Industriais	4	60
	Projeto Industrial	4	60
	Projeto Tecnológico	4	60
Comunicação e Expressão	Libras	4	60
Etnico-racias e Meio Ambiente	Responsabilidade social e Meio ambiente	2	30
_	Subtotal	46	690

Obs: Deverão ser cursados o mínimo de 180 horas e 9 créditos.

1.3.6. Estrutura Curricular-Periodização

a) Componentes Curriculares Obrigatórios

Período	Sigla	Disciplina	PR	TC	СТ	СР	CHT
	IEM012	Álgebra Linear I		4	4	0	60
	IEM011	Cálculo I		6	6	0	90
1°	IEQ011	Química Geral I		4	4	0	60
	IEC111	Informática Instrumental		3	2	1	60
	FGE039	Introdução à Engenharia de Alimentos		2	2	0	30
	Subtotal			19	Su	btotal	300

Período	Sigla	Disciplina	PR	TC	СТ	СР	CHT
	IEM021	Cálculo II	IEM011	6	6	0	90
	IEQ160	Química Analítica Aplicada	IEQ011	3	2	1	60
	FGE040	Desenho Básico	-	3	2	1	60
	IEE006	Bioestatística	-	4	4	0	60
2°	IEF009	Física I	-	5	5	0	75
	FGE038	Metodologia do Trabalho Científico	-	3	2	1	60
			Subtotal	24	S	ubtotal	405

Período	Sigla	Disciplina	PR	TC	СТ	СР	CHT
	IEM141	Equações Diferenciais Ordinárias	IEM021	4	4	0	60
	IEQ602	Química Orgânica Básica	IEQ011	4	4	0	60
	IEF019	Física II	IEF009	5	5	0	75
3°	FGE044	Química de Alimentos	-	3	2	1	60
	FGE046	Alimentos: Qualidade, Saúde e Nutrição	-	2	1	1	45

IEQ634	Físico-química I	IEQ011	4	4	0	60
		Subtotal	22		Subtotal	360

Período	Sigla	Disciplina	PR	TC	СТ	СР	CHT
	FGE045	Bioquímica Geral	IEQ602	3	2	1	60
	IEQ363	Físico-química experimental	-	2	0	2	60
	FGE051	Fenômenos de Transporte I	IEF009	4	4	0	60
	FGF032	Microbiologia Geral	-	3	2	1	60
	FGE052	Metrologia e Instrumentação	-	3	2	1	60
	FGE056	Balanço de material e energético	-	3	2	1	60
4°	FGE041	Fundamentos de eletricidade e instalações na indústria de alimentos	IEF019	3	2	1	60
		1	Subtotal	21	Sı	ubtotal	420

Período	Sigla	Disciplina	PR	TC	СТ	СР	CHT
	FGE053	Bioquímica de Alimentos	FGE045	3	2	1	60
	FGE033	Microbiologia de Alimentos	FGF032	3	2	1	60
	FGE054	Termodinâmica	IEQ602	3	2	1	60
5°	FGE062	Engenharia de segurança	FGE052	3	2	1	60
	FGE073	Operações Unitárias I	IEQ363	3	2	1	60
	FGE064	Fenômenos de transporte II	FTQ021	3	2	1	60
	FGF034	Economia e Administração Agroalimentar	IEM011	3	2	1	60
			Subtotal	21		Subtotal	420

Período	Sigla	Disciplina	PR	TC	СТ	СР	CHT
	FGE078	Operações Unitárias II	FGE073	3	2	1	60

			Subtotal	19	Sı	ıbtotal	390
6°	-	Optativa I	-	3	2	1	60
	FGE069	Análise de Alimentos	FGE052	3	2	1	60
	FGF011	Biotecnologia Aplicada à Indústria de Alimentos	-	2	1	1	45
	FGE048	Engenharia e Ciência do Ambiente	-	3	2	1	60
	FGF040	Sociologia do Trabalho	FGF034	2	1	1	45
	FGE068	Fenômenos de transporte III	FGE054	3	2	1	60

Período	Sigla	Disciplina	PR	TC	СТ	СР	CHT
	FGE065	Análise Sensorial de Alimentos	-	3	2	1	60
	FGE072	Materiais e Embalagens para Alimentos	-	3	2	1	60
	FGE104	Operações Unitárias III	FGE078	3	2	1	60
	FGE067	Processamento de Frutas e Hortaliças	FGE053 FGF033	3	2	1	60
7 °	FGE075	Normalização e Sistemas de Gestão Industrial	-	3	2	1	60
	FGE082	Laboratório de Fenômenos de transporte	-	2	2	1	60
	-	Optativa II	-	3	2	1	60
		,	Subtotal	20	Sı	ubtotal	420

Período	Sigla	Disciplina	PR	TC	СТ	CP	CHT
	FGE074	Processamento de Leite e derivados	FGE053	3	2	1	60
			FGF033				
	FGE080	Engenharia Bioquímica	FGF033	3	2	1	60
	FGE079	Processamento de Carne e derivados	FGE053	3	2	1	60
			FGF033				

8°	FGE077	Instalações e Instrumentação Industrial	-	3	2	1	60
	FGF042	Empreendedorismo e Marketing no Agronegócio	FGE034	2	1	1	45
	-	Optativa III	-	3	2	1	60
	Subtotal			17	Sı	ibtotal	345

Período	Sigla	Disciplina	PR	TC	СТ	СР	CHT
	FGE101	Processamento de Cereais e Oleaginosas	FGE053				
		Cloughloods	FGF033	3	2	1	60
9°	FGE100	Processamento de Pescados e	FGE053				
		derivados	FGF033	3	2	1	60
	FGE083	Instrumentação e Controle de Processos	FGE077	3	2	1	60
	FGF041	Planejamento e Projetos na Indústria de Alimentos	FGF034	3	2	1	60
	FGE089	Água, resíduos e efluentes na indústria de alimentos	FGE048	3	2	1	60
			FGF033				
	FGF052	Consultoria em Segmentos de Alimentação	-	3	2	1	60
			Subtotal	18	Subtotal		360

Período	Sigla	Disciplina	PR	TC	СТ	СР	CHT
	FGF055	Estágio Curricular Supervisionado*	*	6	0	6	180
10°	FGE105	Trabalho de Conclusão de Curso	FGE082	4	4	0	60
			Subtotal	10	Subtotal		240
			TOTAL	191			3.660

Obs: O aluno necessita ter cursado e estar aprovado, no mínimo, em 70% das disciplinas obrigatórias da grade curricular do Curso de Engenharia de Alimentos para poder estar apto a cursar a disciplina " Estágio Curricular Supervisionado" e "Trabalho de Conclusão de Curso".

b) Componentes Curriculares Optativos

Sigla	Disciplina	PR	TC	СТ	СР	CHT
FGE055	Fenômenos de Transporte I	IEF009	3	2	1	60
FGE071	Tecnologia de Processos Fermentativos	FGE080	3	2	1	60
FGE091	Caracterização e Pré- processamento de ovos	-	3	2	1	60
FGE108	Segurança Industrial	-	3	2	1	60
FGE109	Processos tecnológicos	-	3	2	1	60
FGF045	Projeto tecnológico	FGF041	3	2	1	60
FGF049	Termobacteriologia aplicada à alimentos	FGF033	3	2	1	60
FGF051	Gestão de qualidade	FGF075	3	2	1	60
FGF057	Segurança alimentar e ambiental	-	3	2	1	60
FGF058	Laboratório de Agronegócio	-	3	2	1	60
FGF060	Desenvolvimento de novos produtos	FGF011	3	2	1	60
FGF061	Toxicologia de alimentos	FGF033	3	2	1	60
FGP028	Pós-colheita de hortaliças e frutas	-	3	2	1	60
IEE353	Estatística	IEM012	4	4	0	60
IHP123	Língua Brasileira de Sinais B	-	4	4	0	60
IHP164	Portugues Instrumental		4	4	0	60
TOTAL			51	540	360	900

1.3.7. Carga Horária Total do Curso

RESUMO DA MATRIZ CURRICULAR

EIXOS ESTRUTURANTES	СН	CR
Núcleo de Conteúdos Básicos	1.185	71
Núcleo de Conteúdos Profissionalizantes	1.410	73
Núcleo de Conteúdos Específicos	705	35
Núcleo Complementar	240	10
Total para as Disciplinas Obrigatórias	3.480	182
Atividades Complementares	90	-
Núcleo Complementar Optativo	180	09
CARGA HORÁRIA TOTAL:	3.750	191

[✓] Pela legislação, a carga horária total mínima exigida para as engenharias corresponde a 3600 horas.

1.3.8 Trabalho de Conclusão de Curso -TCC

O Trabalho de Conclusão de Curso será feito na forma de Monografia a qual deve impreterivelmente seguir as regras descritas abaixo:

I - Normas Gerais

- Art. 1° A MONOGRAFIA tem como objetivo, possibilitar aos alunos do curso de Engenharia de Alimentos, uma iniciação a pesquisa científica de forma a torná-los capazes de melhor entender a problemática da conservação e manufaturação das matérias primas agropecuárias da região amazônica e no encaminhamento das soluções.
 - **Parágrafo único**. A confecção da Monografia obedecerá às normas estabelecidas pela Coordenação de Monografia a ser designada pelo Colegiado de Curso.
- Art. 2°- O aluno apto em realizar a atividade de monografia deverá fazer a sua matricula nas disciplina FGE105 Trabalho de Conclusão de Curso.

- § 1° O aluno só deverá se matricular nessa disciplina, quando tiver certeza que concluirá a monografia no período em que se matriculou.
- § 2º O aluno para matricular-se nessa disciplina deverá ter cursado no mínimo 70% dos créditos em disciplinas obrigatórias.
- § 3° O aluno que não concluir a atividade no período matriculado receberá nota 0 (zero) e será reprovado.
- § 4° Essa disciplina possui carga horária total de 60 horas, correspondendo a 04 créditos totais.
- Art. 3°- A Coordenação da Atividade de Monografia será exercida por um professor da Faculdade de Ciências Agrárias que ministre regularmente disciplinas para o curso de Engenharia de Alimentos e cujo nome deverá ser escolhido em reunião do Colegiado do Curso de Engenharia de Alimentos.
 - Parágrafo único: O professor Coordenador dessa atividade deverá ser obrigatoriamente professor de carreira da Universidade Federal do Amazonas e lotado na Faculdade de Ciências Agrárias.

II - Do Comitê de Monografia

- Art. 4° A todo aluno que deseje desenvolver uma atividade de pesquisa, será garantido um Comitê de Orientação formado por um Orientador e/ou um Co-Orientador.
- Art. 5° Para participar do Comitê de Monografia será exigido no mínimo o título de Mestre.
- Art. 6° O Comitê de Monografia deverá fazer parte da Banca Examinadora do trabalho final, tanto em relação ao trabalho escrito como na apresentação do trabalho em data previamente marcada.

III - Do Plano da Monografia

- **Art. 7° -** Após a definição do Comitê de Monografia o aluno em consonância com o seu Orientador e/ou Co-Orientador, elaborará um Plano de Monografia.
 - § 1° O plano de monografia deverá conter:
 - Introdução (descrição do problema e justificativa);
 - Objetivo (Geral e específicos);

- Material e Métodos:
- · Cronograma de Atividades;
- Orçamento;
- · Bibliografia.
- § 2° A confecção do plano de monografia deve seguir as normas estabelecidas pela Coordenação de pesquisa e não deverá exceder 10 laudas.
- Art. 8° O Plano de Monografia deverá ser submetido à aprovação pelo Colegiado do Curso de Engenharia de Alimentos, o qual se reserva o direito de aprovar, rejeitar ou sugerir modificações.
- **Art. 9°** A mudança de Orientador e do Comitê de Monografia só poderá ser feita por motivos justificáveis junto a Coordenação de Monografia.
 - IV Da Aprovação e Homologação da Monografia
- Art. 10 Após a conclusão do trabalho de monografia pelo aluno, este deverá ser submetido à Banca Examinadora que será constituída pelo Comitê de Monografia e mais dois membros com titulação mínima de Mestrado a ser indicado pelo Coordenador de Pesquisa.
- Art. 11 A Banca Examinadora deverá ter acesso ao trabalho a ser defendido, no mínimo 30 dias antes de sua defesa.
- Art. 12- A nota final da pesquisa será a média aritmética das notas atribuídas pelos membros da Banca Examinadora, no momento em que ela for defendida de acordo com o quadro 1.
- Art. 13 A defesa do "Trabalho de Conclusão de Curso" será feita por meio de uma apresentação oral com tempo mínimo de 20 min e máximo de 30 min, seguido de 10 minutos de argüição para cada membro da Banca Examinadora em local previamente divulgado pela Coordenação de Monografia.
- Art. 15 Será considerado aprovado o aluno que obtiver média final maior ou igual a 5,0 (cinco) com base nos critérios contidos no quadro 1, cujas as notas serão de 0 (zero) a 10 (dez)
- Quadro 1. Critérios a serem adotados pela Banca Examinadora de defesa de monografia

Critérios para avaliação	Nota
Clareza na exposição	
Domínio de conhecimento do conteúdo e segurança	

Apresentação, performance e entusiasmo	
Valor técnico do tratamento do tema	
Utilização do tempo de exposição	
Postura crítica	
Clareza, essencialidade na apresentação das conclusões	
Clareza na percepção da problemática	
Conhecimento, clareza, obetividade nas respostas	
Contribuição em relação ao currículo do curso	
Média	

- Art. 16 Após a defesa o aluno deverá fazer as correções sugeridas pela Banca Examinadora e entregar ao Coordenador de Pesquisa, duas cópias impressas e com capa dura na cor azul e uma digital.
 - § 1° As notas dos alunos que defenderam seus trabalhos serão encaminhada pelo Coordenador de Pesquisa à Coordenação de Curso de Engenharia de Alimentos.
 - § 2º O aluno terá prazo máximo de 15 dias a contar da data de defesa do trabalho para fazer as correções sugeridas pela banca examinadora.
 - § 3° O aluno que não obedecer ao prazo estabelecido no § 2° do Art. 38 não terá sua nota lançada, inviabilizando sua colação de grau.

1.3.9 Estágio Curricular Supervisionado

O estágio curricular supervisionado é um conteúdo curricular obrigatório. Ele é um conjunto de atividades de formação, programadas e diretamente supervisionados por membros do corpo docente da instituição formadora e procuram assegurar a consolidação e a articulação das competências estabelecidas.

O estágio supervisionado visa assegurar o contato do formando com situações, contextos, instituições e empresas alimentícias, permitindo que conhecimentos, habilidades e atitudes se concretizem em ações profissionais, sendo recomendável que suas atividades se distribuam ao longo do curso.

Desse modo, o Estágio Curricular Supervisionado do Curso de Engenharia de Alimentos da Faculdade de Ciências Agrárias da Universidade Federal do Amazonas deve impreterivelmente seguir as regras descritas abaixo:

I - Normas Gerais

- Art. 1° O estágio supervisionado representa uma estratégia de profissionalização que complementa o processo ensino-aprendizagem através da interação teoria/prática, e tem como objetivo propiciar ao aluno estagiário a vivência da teoria adquirida, através de um treinamento em atividades profissionais diretamente ligadas à profissão do Engenheiro de Alimentos, e desta forma desenvolver uma consciência profissional.
- Art. 2° O estágio deverá ser realizado em Empresas Alimentícias, Instituições de Pesquisa, e Instituições que desenvolvam atividades afins, inclusive na Faculdade de Ciências Agrárias e na Fazenda Experimental da Universidade Federal do Amazonas.
- Art. 3° O aluno só poderá se matricular na disciplina FGF055 Estágio Curricular Supervisionado após ter cursado no mínimo 70% dos créditos das disciplinas obrigatórias e também ter cursado a(s) disciplina(s) da área do estágio.
- **Art. 4°** O estágio terá duração de 180 (cento e oitenta) horas, correspondentes a 06 créditos práticos.
- Art. 5° A Coordenação de Estágio será exercida por um professor da Faculdade de Ciências Agrárias que ministre regularmente disciplinas para o curso de Engenharia de Alimentos e cujo nome deverá ser escolhido em reunião do Colegiado do Curso de Engenharia de Alimentos.
 - **Parágrafo único:** O professor Coordenador dessa atividade deverá ser obrigatoriamente professor de carreira da UFAM.

II - Das Vagas e Seleção

- Art. 6° O Coordenador de Estágio deverá divulgar o nome das Instituições ou Empresas com o respectivo número de vagas oferecidas aos alunos do curso de Engenharia de Alimentos, bem como prestar esclarecimento aos discentes interessados nesta atividade.
- Art. 7° Caberá ao Coordenador de Estágio contatar as Instituições ou Empresas fornecedoras de vagas, verificando "in loco", se as mesmas preenchem os requisitos mínimos exigidos e manter um cadastro atualizado destas instituições.
- Art. 8° Quando houver mais de 01 (um) candidato para uma determinada vaga, será selecionado o aluno formando. Persistindo o empate utilizar-se-á o coeficiente de rendimento acadêmico

como critério. Ainda assim persistindo o empate será selecionado o aluno que obtiver maior média na(s) disciplina(s) da área do estágio.

III - Do Comitê de Orientação

- Art. 9° A todo aluno que seja selecionado para participar do estágio supervisionado será garantido um Comitê de Orientação, formado por um Orientador e um Supervisor.
- Art. 10 O Orientador deverá ser obrigatoriamente, um professor de carreira da Faculdade de Ciências Agrárias e que ministre disciplina para o curso de Engenharia de Alimentos.
- Art. 11 O Supervisor deverá ser um profissional da Instituição ou Empresa, onde se realize o estágio, cuja seleção do mesmo será de inteira responsabilidade do professor orientador. O supervisor terá como funções:
 - Elaborar, em comum acordo com o estagiário e o orientador, o programa de estágio a ser cumprido;
 - b. Zelar pelo cumprimento do programa de estágio;
 - c. Avaliar o rendimento do aluno durante a realização do estágio
 - d. Introduzir o aluno no cenário onde se desenvolverá a ação, orientando seus primeiros passos profissionais em direção à competência e a excelência.

IV - Do Plano do Estágio Supervisionado

- Art. 12 Após a definição do Comitê de Orientação, o aluno em concordância com o Orientador e Supervisor e observando as diretrizes internas e peculiaridades das atividades desenvolvidas pela instituição ou empresa onde se realizará o estágio irá elaborar um plano de estágio.
- § 1° O plano deverá conter título, introdução, material e métodos, resultados esperados (no estágio) e bibliografia.
- § 2° O relatório deve definir com clareza o que o estagiário irá realizar durante o período em que estiver estagiando.
- § 3° As linhas básicas deste planejamento devem ser definidas pelo estagiário em comum acordo com seu orientador.
- § 4° O plano de estágio é obrigatório e deverá seguir as normas da ABNT, sendo perfeitamente aceitáveis alterações que identifiquem determinadas peculiaridades.

- Art. 13 O estágio deverá desenvolver-se em local que ofereça condições plenas para a realização das atividades programadas, além de contar com a supervisão de profissional pertencente ao cenário onde o estágio estará se desenvolvendo.
- **Art. 14** De posse do plano de estágio, o Coordenador de Estágios do curso de Engenharia de Alimentos, formalizará o estágio supervisionado junto à Instituição ou Empresa.
- Art. 15 Após a formalização do estágio na empresa, o Coordenador de Estágios encaminhará uma cópia do plano de estágio ao Coordenador do Curso de Engenharia de Alimentos.

V - Da Avaliação do Estágio

- Art. 16 O estágio será avaliado em duas etapas: a primeira pelo supervisor de estágio e a segunda por uma banca examinadora nomeada pelo Coordenador de estágio:
 - § 1º Na primeira avaliação, o supervisor deverá utilizar como critério os itens relacionados no Quadro 2, atribuindo nota de 0 (zero) a 10 (dez) para cada item avaliado.

Quadro 2. Critérios a serem adotados pelo supervisor do estágio na avaliação do desempenho do estagiário/docente.

Peso	Nota
1	
1	
2	
1	
3	
	Σ(notas)/8
	1 1 2

§ 2º Na segunda avaliação, uma banca examinadora composta por 02 (dois) profissionais na área do estágio, nomeada pelo Coordenador de Estágio, sendo um deles o Professor Orientador, atribuirão notas variando de 0 (zero) a 10 (dez) conforme critérios apresentados no Quadro 3.

Quadro 3. Critérios a serem adotados pelos avaliadores do relatório final do estágio

Critérios para avaliação	NOTA
Relevância do tema	
Obetividade na delimitação do assunto	
Conteúdo do desenvolvimento do assunto	
Profundidade de conhecimentos específicos	
Percepção da problemática da área em que atuou	
Postura crítica	
Clareza e essencialidade nas conclusões e sugestões	
Conhecimento e personalidade manifestadas nas conclusões	
Redação do texto e formalização do relatório	
Contribuição em relação ao Curriculo do Curso	
Média	

- Art. 17 O período de preparação do relatório final é de 45 dias, a contar do regresso do aluno à Faculdade de Ciências Agrárias (término do estágio na Instituição ou Empresa cedente), e deverá conter de uma forma geral o título, introdução e justificativa, material e métodos, resultados alcançados, conclusão e bibliografia, seguindo as normas da ABNT vigente.
- Art. 18 O relatório deverá ser entregue à Secretaria da Coordenação de Estágios em duas vias, findo os 45 dias considerados como período de elaboração. A secretaria encaminhará os relatórios para a Banca Examinadora, que terá quinze (15) dias para análise e correções necessárias.
- Art. 19 A nota final do estágio será a média aritmética das notas atribuídas pelo supervisor e pelos avaliadores do relatório final
- Art. 20 Será considerado aprovado o estagiário que obtiver nota final maior ou igual a 5,0 (cinco).
- Art. 21 O aluno só poderá colar grau mediante a entrega de três cópias do relatório final do estágio no Colegiado de Curso de Engenharia de Alimentos com todas as correções sugeridas pelos avaliadores, 30 dias após receber a cópia corrigida do segundo avaliador. Sendo uma

cópia para a coordenação de estágio, uma para a biblioteca da UNIVERSIDADE FEDERAL DO AMAZONAS e outra para a Instituição ou Empresa em que foi realizado o estágio.

Art. 22 – O aluno que não cumprir qualquer um dos prazos estabelecidos acima terá a nota 0,0 (zero) automaticamente lançada em seu histórico escolar, portanto, sendo reprovado nesta disciplina.

1. 3.10. Atividades Complementares

As Atividades Complementares se constituirão no aproveitamento de estudos e práticas na área do Curso e áreas afins realizadas ao longo de todo o Curso conforme o estabelecido pela Resolução CEG/CONSEP nº 018/2007.

Esta Resolução determina que Atividades Complementares sejam aquelas relacionadas com o ensino, a pesquisa e a extensão, validadas pela Coordenação do Curso.

- Atividades Complementares de ENSINO s\u00e3o as a\u00f3\u00f3es desenvolvidas por meio das seguintes modalidades:
 - I Ministrante de curso de extensão e/ou debatedor em mesa redonda;
 - II Atividade de monitoria desenvolvida em relação às disciplinas oferecidas na área e conhecimento;
 - III Participação em Semana de Curso;
 - IV Participação em Programa Especial de Treinamento PET;
 - V Carga horária optativa excedente;
 - VI Outras atividades de Ensino a critério da coordenação do curso.
 - VII Estágios não obrigatórios, vinculados ao Ensino de Graduação e à matriz curricular do Curso em que o aluno se encontra matriculado.
- 2. São Atividades Complementares de PESQUISA E PRODUÇÃO CIENTÍFICA o conjunto de ações sistematizadas, coordenadas por um professor orientador, voltadas para a investigação de tema relevante na área de sua formação ou área afim:
 - I Participação em projetos de pesquisa aprovados e concluídos com bolsas do PIBIC;
 - II Participação em projetos de pesquisa aprovados em outros programas;
 - III Autor ou co-autor de artigo científico completo publicado em periódico com comissão editorial;

- IV Autor ou co-autor de capítulo de livro;
- V Premiação em trabalho acadêmico;
- VI Outras atividades de Pesquisa a critério da coordenação do curso.
- VII Apresentação de trabalho científico em eventos de âmbito regional, nacional ou internacional, como autor;
- 3. São Atividades Complementares de EXTENSÃO:
 - I As desenvolvidas sob a forma de congressos, seminários, simpósios, conferências, palestras, fóruns, apresentações de painéis ou outras similares, como ouvinte ou participante direto;
 - II As desenvolvidas sob a forma de curso de extensão;
 - III Participação como membro de comissão organizadora de eventos científicos;
 - IV Representação discente comprovada;
 - V Outras atividades de Extensão a critério da coordenação do curso.

O aproveitamento das Atividades Complementares deverá ser solicitado mediante documento comprobatório, além disso, terá cumprido essa etapa (sendo considerado aprovado) o aluno que comprovar sua participação em atividades complementares de pesquisa, ensino e extensão com carga horária mínima de 200 horas (Resolução CEG/CONSEP nº 018/2007). Só poderão ser validadas atividades realizadas pelo aluno somente a partir de sua matrícula institucional no curso.

As atividades complementares devem ser realizadas em horário distinto daquele das aulas e demais atividades pedagógicas regulares do curso de graduação.

Ressalta-se ainda que as atividades registradas como complementares no histórico do aluno não poderão ser aproveitadas como carga horária optativa.

As Diretrizes de pontuação para as atividades complementares do Curso de Engenharia de Alimentos são citadas a seguir, considerando que, para fins de incentivar a diversificação das atividades realizadas pelo estudante, os créditos complementares exigidos devem ser cumpridos por meio de, pelo menos, dois (2) tipos de atividades.

Pontuação das Atividades Complementares:

1 crédito a cada 60 horas

- a) Participação ativa em projetos de extensão universitária (bolsista remunerado ou voluntário);
- b) atividades de iniciação científica, realizadas no âmbito da UFAM;
- c) atividades de monitoria em disciplinas da UFAM;
- d) estágios extracurriculares desenvolvidos com base em convênios firmados pela UFAM;
- e) atividades desenvolvidas como Bolsa Permanência ou Bolsa Trabalho, no âmbito da UFAM;
- f) atividades desenvolvidas como Bolsa PET (Programa de Educação Tutorial), Bolsa EAD (Educação a Distância) e demais bolsas acadêmicas;
- g) participação em comissão coordenadora ou organizadora de evento de extensão isolado, devidamente registrado nos órgãos competentes.

1 crédito a cada 15 horas

- a) disciplinas de outros cursos/habilitações ou ênfases da UFAM, ou de instituições de ensino superior nacionais ou estrangeiras, previamente aprovadas;
- b) participação como agente passivo em cursos, seminários e demais atividades de extensão universitária, excluídas as atividades de prestação de serviços que envolvam remuneração de servidores docentes e/ou técnicos-administrativos da UFAM;
- c) atividades de extensão promovidas por outras instituições de ensino superior ou por órgão público.

3 créditos por publicação

a) publicações de artigos internacionais em periódico indexado, como autor principal.

2 crédito por publicação

a) publicações nacionais em periódico indexado, como autor principal

1 crédito por evento

- a) publicação nacional ou internacional como segundo autor;
- b) trabalhos completos publicados em eventos/congressos como primeiro autor;

c) participação em eventos promovidos por Associação Científica reconhecida.

0,5 crédito por evento

- a) publicação de resumos em eventos/congressos como primeiro autor;
- b) participação em semanas acadêmicas e encontros estudantis;

0,25 crédito por evento

- a) publicação nacional ou internacional como terceiro autor em diante;
- b) trabalhos completos publicados em eventos/congressos como segundo autor em diante;
- c) publicação de resumos em eventos/congressos como segundo autor em diante.

1 crédito a cada 15 horas, assegurado um mínimo de 1 crédito por mandato

a) atividades de representação discente junto aos órgãos da Universidade, mediante comprovação de, no mínimo 75% de participação efetiva. O discente deverá apresentar o relatório de Atividades Complementares de Graduação à comissão responsável do curso de Engenharia de Alimentos, acompanhado de documentação comprobatória, obedecido ao prazo estabelecido (a partir do oitavo semestre e impreterivelmente antes da matrícula do último semestre).

1.3.11. Simulados Anuais, Seminários Interdisciplinares e Semana de Projetos Interdisciplinares.

A coordenação do curso de Engenharia de Alimentos da Universidade Federal do Amazonas, através de equipe previamente acordada, será responsável por programar a cada ano, a partir do quarto período, um simulado com questões específicas do curso para todas as turmas existentes e referentes ao período específico no qual cada turma esteja cursando. O objetivo desta tarefa é o de avaliar o aprendizado dos alunos, bem como prepará-los para o ENADE. A nota obtida pelo aluno no simulado será utilizada como uma atividade parcial em cada disciplina do semestre corrente.

As atividades interdisciplinares visam trazer aos alunos seminários temáticos atuais relacionados a temas da área de engenharia de alimentos, ciência de alimentos e ciência e tecnologia de alimentos e outras áreas afins. O caráter multidisciplinar na formação dos palestrantes, sempre que possível, deverá ser levado em considerção.

A coordenação do curso de Engenharia de Alimentos, juntamente com equipe de professores previamente acordados, Centro Acadêmico de Engenharia de Alimentos, além das

turmas do sexto, sétimo e oitavo períodos, será a responsável pela elaboração da "SEMANA DE PROJETOS INTERDISCIPLINARES" do curso de Engenharia de Alimentos.

Essa semana temática deve ser anual e será computada como atividade complementar ao currículo do aluno. Sugere-se que este evento ocorra no mês de outubro de cada ano vigente. Deverá ser eleito um professor responsável para trabalhar na orientação dos projetos a serem desenvolvidos com cada turma do sexto, sétimo ou oitavo período.

Durante a semana, todos os trabalhos desenvolvidos serão expostos a partir da apresentação de seminários e mesa redonda. Os temas também devem ser pensados visando a confecção de artigos científicos.

1.3.12 Objetivos, Ementas e Bibliografia Básica das Disciplinas por Período.

1º PERÍODO

Disciplina	Introdução à Engenharia de Alimentos							
SIGLA	FGE039	CRÉDITOS	2	СН	30	PR	-	
00 IETI\(00								

OBJETIVOS

Dar uma visão geral sobre o profissional e a profissão de Engenheiro de Alimentos, procurando inter-relacionar a formação com as responsabilidades e direitos profissionais.

EMENTA

O caráter interdisciplinar do Currículo do Curso de Engenharia de Alimentos. O papel do Engenheiro de Alimentos na indústria e instituições de pesquisa. Áreas de atuação do Engenheiro de Alimentos. Postura do Engenheiro de Alimentos com relação à sociedade e ao mercado de trabalho.

REFERÊNCIASBÁSICAS

Sites:

www.confea.org.br www.abea.com.br www.abia.org.br www.ital.org.br www.google.com.br

REFERÊNCIAS COMPLEMENTARES

ASSOCIAÇÕES - Brasil

ABAM - Assoc. Brasileira dos Produtores de Amido de Mandioca

ABCQ - Assoc. Brasileira dde Controle de Qualidade

ABECITRUS - Assoc. Brasileira dos Exportadores de Citrus

ABIA - Assoc. Brasileira das Indústrias de Alimentação

ABIAM - Assoc. Brasileira das Indústrias de Ingredientes para Alimentos

ABIC - Assoc. Brasileira da Indústria do Café

ABIMA - Assoc. Brasileira das Indústrias de Massas Alimentícias

ABIMAQ - Assoc. Brasileira da Indústria de Máquinas e Equipamentos

ABIOVE - Assoc. Brasileira das Indústrias de Óleos Vegetais

ABIQ - Assoc. Brasileira das Indústrias de Queijo

ABITRIGO - Assoc. Brasileira da Indústria do Trigo

ABML - Assoc. Brasileira de Movimentação e Logística

ABNT - Assoc. Brasileira de Normas Técnicas

ABRASEG - Assoc. Bras. dos Distrib. de Equip. de Segurança e Proteção ao

Trabalho

ABRE - Assoc. Brasileira de Embalagem

SBCTA - Sociedade Brasileira de Ciencia e Tecnologia de Alimentos

BASES DE DADOS

Nutrient Data Base - USDA

Tabela Brasileira de Composição de Alimentos - USP

Tabla de Composición de Alimentos de America Latina - FAO

INSTITUTOS, ORGÃOS DE GOVÊRNO e OUTROS - Brasil

Alimento Seguro

ANVISA - Agência Nacional de Vigilância Sanitária do Ministério da Saúde

Centro de Tecnologia de Produtos Alimentares - SENAI

EMBRAPA - CTAA - Centro Nac. de Pesquisa de Tecn. Agroindustrial de Alimentos

INMETRO - Instituto Nacional de Metrologia, Normatização e Qualidade Industrial

INPI - Instituto Nacional de Propriedade Industrial

ITAL - Instituto de Tecnologia de Alimentos

Livraria Varela

Min. da Agricultura

SEBRAE NACIONAL

Disciplina	Informática Instrumental							
SIGLA	IEC111	CRÉDITOS	3	СН	60	PR	30	

OBJETIVOS

Deixar o aluno apto aos conceitos básicos e fundamentais da informática e suas aplicações na engenharia de alimentos.

EMENTA

Conceitos e aplicações básicos de sistemas de computação. Hardware e Software. Software aplicativos de uso específico. Aplicações da informática disponíveis para as atividades dos professores de educação física.

REFERÊNCIAS BÁSICAS

BROOKSHEAR, J. G., Ciência da Computação – uma visão abrangente. 5. ed. Bookman Companhia Editora 2000.

CAPRON, H. L.; JOHNSON, J. A. Introdução à Informática. São Paulo: Pearson/Prentice Hall, 2004.

VELLOSO, F. de C. Informática: conceitos Básicos. 7. ed. São Paulo: Elsevier, 2004, 424p.

REFERÊNCIAS COMPLEMENTARES

ADELL, J. Redes y Educación. In: PANS, J. de P.; SEGURA, G. (Coord.). Nuevas Tecnologias:

comunicación audiovisual y educación. Barcelona: Cedecs,1998.

CATAPULT, I. Microsoft Word 2000 passo a passo. São Paulo: Makron Books, 2000.

MANZANO, A.L. N. G. Informática Básica. Editora Érica. 2007.

MARTINS, M. Informática FGV. Editora Ferreira. 2010.

SILVA, M. G. Informática – Terminologia básica, Windows xp. Editora Erica. 2002.

Disciplina	Cálculo I						
SIGLA	IEM011	CRÉDITOS	6	СН	90	PR	-

OBJETIVOS

Fornecer ao aluno conceitos introdutórios de cálculo diferencial e integral; limite, continuidade, derivação e integração de funções de uma variável.

EMENTA

Limites; Continuidade; Derivação de funções de uma variável; Aplicação das derivadas; Integração indefinida e definida; Interação por partes e por substituição.

REFERÊNCIAS BÁSICAS

ANTON, Howard. Cálculo, um novo horizonte. 6 ed. Volumes I e II. Porto Alegre. EditoraBookman, 2000.

FLEMMING, Diva Maria, GONÇALVES, Mirian Buss. Cálculo A - Funções, Limites, Derivaçãoe Integração. 5 ed. São Paulo: Editora McGraw-Hill Ltda., 1992.

LEITHOLD, Louis. O Cálculo com Geometria Analítica. Vol. 1 São Paulo: Harbra. 1994.

REFERÊNCIAS COMPLEMENTARES

AYRES, Frank. Cálculo Diferencial e Integral. São Paulo: Coleção Schaum -McGraw-Hill, 1994.

GRANVILLE, Smith. Elementos de Cálculo Diferencial e Integral. Rio de Janeiro: Científica, 1961.

HOFFMANN, Laurence D. Cálculo 1. Vol. 1., 2. ed. Rio de Janeiro: LTC Editora, 1994.

LANG, Serge. Cálculo I. Rio de Janeiro: Livros Técnicos e Científicos, 1976.

MUNEM-FOULIS - Cálculo. Vol I. Rio de Janeiro: Editora Guanabara Koogan S.A., 1978.

SWOKOWSKI, Earl Willian, Cálculo com Geometria Analítica, 2 ed., Volumes I e II,São Paulo: Editora Makron Books, 1994.

Disciplina	Álgebra Linear I							
SIGLA	IEM012	CRÉDITOS	4	СН	60	PR	-	

OBJETIVOS

Identificar as coordenadas na reta, no plano e no espaço. Calcular distância entre dois pontos e entre um Ponto e uma Reta, Ponto Médio.Reconhecer colinearidade, paralelismo e perpendicularismo. Identificar Equação Geral e Reduzida da Reta e da Circunferência. Utilizar conhecimentos de geometria analítica para resolver problemas de aplicação. Reconhecer Vetores e suas propriedades. Efetuar operações entre vetores. Representar graficamente os vetores. Resolver problemas envolvendo vetores.

EMENTA

Matrizes. Cálculo de Determinantes. Sistemas de Equações. Lineares. Vetores. Equações da Reta e do Plano. Ângulos. Distância e Intersecções. Geometria Analítica Plana.

REFERÊNCIAS BÁSICAS

ANTON, H. Álgebra linear com aplicações. Porto Alegre: Bookman, 2002.

KOLMAN, B. Introdução à Álgebra Linear com aplicações. Rio de Janeiro: LTC,1999.

STEINBRUCH, A.; WINTERLE, P. Introdução à Álgebra linear. São Paulo: MacGraw-Hill,1990.

REFERÊNCIAS COMPLEMENTARES

BOLDRINI. J. L. Algebra Linear. 3.ed. São Paulo: Harbra, 1980.

MACHADO, A. S. Álgebra e Geometria analítica. São Paulo: Atual, 1982.

MALAJOVICH, G. Álgebra Linear. Rio de Janeiro, 2010.

SANTOS, R. J. Curso de Geometria Analítica e Álgebra Linear. Minas Gerais. 2007.

VENTURI, J. J. Álgebra Vetorial e Geometria Analítica. Curitiba: Artes Gráficas, 1989.

Disciplina	Química Ge	eral I					
SIGLA	IEQ011	CRÉDITOS	4	СН	60	PR	-
OBJETIVOS	<u> </u>						

Proporcionar um aprendizado geral sobre a matéria sob os aspectos de transformações, interações, obtenções, equilíbrios, bem como o de vivenciar os métodos utilizados pelas ciências.

EMENTA

Estrutura Atômica, Tabela Periódica, Ligações Químicas, Funções Inorgânicas, Formulações, Soluções, Sistema Internacional de Unidades, Reações Químicas, Estequiometria; Cinética Química e Equilíbrio Químico.

REFERÊNCIAS BÁSICAS

ATKINS, Peter, Princípios de Química, Editora Artmed, São Paulo, 2001.

MASTERTON, Willian L. Princípios de química. 6 ed. Rio de Janeiro: GuanabaraKoogan, 1985.

RUSSEL, John Boir. Química geral. 2 ed. São Paulo: McGraw-Hill do Brasil, 1994.

REFERÊNCIAS COMPLEMENTARES

BACCAN, N. Química Analítica quantitativa elementar. Editora Blucher 3ª ed. 2001.

BRADY, J. E. Química Geral. Editora LTC Vol. 01. 1986.

MENDHAM, J. Análise química quantitativa. LTC 6ª. 2002.

QUAGLIANO, J. V. Química. 3 ed. São Paulo: Guanabara, 1973.

SILVA, Ronaldo Henrique da. Curso de química. 2 ed. São Paulo: Harbra, 1992.

Disciplina	Português Instrumental							
SIGLA	IHP164	CRÉDITOS	4	СН	60	PR	-	

OBJETIVOS

- Oferecer subsídios de Língua Portuguesa aos estudantes, afim de que possam pensar, falar e escrever com mais clareza, concisão, coerência e ênfase;
- Auxiliar os estudantes no sentido de saberem usar a língua para estruturar melhor seus pensamentos, nas falas e suas escritas, enfim na comunicação.

EMENTA

Aprimoramento da leitura compreensiva, interpretativa e crítica de textos persuasivos, informativos e técnicos, tendo em vista a produção dessa tipologia textual em conformidade com a gramática de uso.

REFERÊNCIAS BÁSICAS

AQUINO, Dilma Pires de. & Outros. A Motivação e as Condições de Produção deTextos. São Paulo: Editora da PUC, 1986.

FIORIN, José Luiz & SAVIOLI, Francisco Platão. Para entender o texto: Leitura eRedação. São Paulo: Ática, 1990.

INFANTE, Ulisses. Curso de Gramática Aplicada aos Textos. 2 ed. São Paulo: Scipione, 1995.

REFERÊNCIAS COMPLEMENTARES

CITELLI, Adilson. Linguagem e Persuasão. São Paulo: Ática, 1985.

GARCIA, Othon M. Comunicação em Prosa Moderna. 6 ed. Rio de Janeiro:

Fundação Getúlio Vargas, 1977.

INFANTE, Ulisses. Do Texto ao Texto: Curso Prático de Leitura e Redação. São Paulo:Scipione Ltda, 1991.

KASPARI, Adalberto José. Redação Oficial: normas e modelos. 10 ed. Porto Alegre:PRODIL, 1996.

MEDEIROS, J. B. Português Instrumental - Contém Técnicas de Elaboração de Trabalho de Conclusão de Curso. Editora Altas, edição 9. 2010.

2º PERÍODO

Disciplina	Metodolog	Metodologia do Trabalho Científico								
SIGLA	FGE038	FGE038								
OR IETIVOS										

OBJETIVOS

Fornecer ao aluno noções sobre a ciência e o conhecimento, bem como familiarizá-lo com a pesquisa, metodologia e texto científico. A conhecerem e utilizarem as normas técnicas atualizadas da Associação Brasileira de Normas Técnicas (ABNT).

EMENTA

A ciência, suas características e modalidades. O conhecimento e seus diferentes tipos, o comportamento científico e as áreas do conhecimento. A pesquisa científica: tipos e modalidades. Métodos e técnicas de pesquisa. O projeto científico. O texto científico. Normas técnicas da ABNT.

REFERÊNCIAS BÁSICAS

FURASTÉ. P.A. Normas técnicas para o trabalho científico. Ed. Isasul, 2011

MARCONI, M.A. Técnicas de pesquisa. 7ª Ed. Atlas. 2011

SEVERINO, Antonio Joaquim. Metodologia do Trabalho Científico. 20 ed. Ver.Ampl. São Paulo: Cortez, 1996.

REFERÊNCIAS COMPLEMENTARES

ANDRADE, Maria Margarida de. Introdução à Metodologia do Trabalho Científico. São Paulo: Atlas, 1993.

BECKER, Fernando et al. Apresentação de Trabalhos Escolares. 13 ed. rev. E atual.Porto Alegre: Multilivro, 1993.

CERVO, A. L. & BERVIAN, P. A. Metodologia Científica. 4 ed. São Paulo: MakronBocks do Brasil, 1996.

GALLIANO, A. Guilherme. O Método Científico: Teoria e Prática. São Paulo: Harbra,1986.

LUCKESI, Cipriano et al. Fazer Universidade: Uma proposta metodológica. 3 ed.São Paulo: Cortez, 1986.

Michel, M.H. Metodologia e pesquisa científica em ciências sociais. Ed. Atlas. 2005

RUIZ, João Álvaro. Metodologia Científica. 3 ed. São Paulo: Atlas, 1995.

Disciplina	Desenho B	ásico	Desenho Básico								
SIGLA	FGE040	CRÉDITOS	3	СН	60	PR	30				

OBJETIVOS

Reconhecer os elementos, geométricos e as convenções gráficas. Fazer uso das coordenadas descritivas. Visualizar elementos em duas e três dimensões, e ser capaz de passar de uma para outra. Visualizar perspectivas.

EMENTA

Instrumentação, normas e convenções. Construções geométricas fundamentais. Métodos descritivos. Mudanças de planos. Rotação (rebatimento) de planos. Sistemas de projeções e perspectivas axonométricas.

REFERÊNCIAS BÁSICAS

GEOMETRIA DESCRITIVA. Galdys Cabral de Melo BORGES, Deli Garcia Olle Barreto, Enio Zago Martins.

NOÇÕES DE GEOMETRIA DESCRITIVA, vol. I e II. Alfredo dos Reis PRINCIPE JÚNIOR.

NOÇÕES DE GEOMETRIA DESCRITIVA, vol. I e II. Virgilio Athayde PINHEIRO..

REFERÊNCIAS COMPLEMENTARES

NEIZEL, E. Desenho técnico para construção civil. São Paulo, EPU-EDUSP, 1974. 68 p.

TELLES, Pedro C. da Silva. Tubulações Industriais. R. de Janeiro.

VALLE, Ciro Eyerdo. Implantação de Indústrias. Livros Técnicos e Científicos, Ed. S.A.R. de Janeiro.

Disciplina	Bioestatíst	ica					
SIGLA	IEE006	CRÉDITOS	4.4.0	СН	60	PR	-

OBJETIVOS

Mostrar os principais conceitos estatísticos bem como a aplicação dos métodos estatísticos na organização e análise de dados.

EMENTA

Método científico e método estatístico. População e amostra. Coleta e organização de dados: dados brutos e agrupados. Distribuição de Frequência: Tabelas e Gráficos. Medidas de Tendência Central. Medidas de Ordem. Box-plot e Outliers. Medidas de Variação.

REFERÊNCIAS BÁSICAS

BUSSAB, W.O.; MORETTIN, P.A. Estatística Básica. 5 ed. São Paulo: Saraiva, 2010.

M. I. Araújo e A. A. Balieiro, Apostila de Bioestatística. UFAM, 2006.

SOARES, J. F. & SIQUEIRA, A. L. (2010). *Introdução à Estatística Médica*, 3ª. *Edição*. Belo Horizonte: COOPMED

VIEIRA, Sônia. Introdução à Bioestatística. 4. ed. Elsivier 2010 São Paulo

REFERÊNCIAS COMPLEMENTARES

FONSECA, Jairo Simon da. e MARTINS, Gilberto de Andrade, Curso de Estatística, 3 A edição - São Paulo: Atlas, 1982

MORETTIN, Pedro Alberto. Introdução à Estatística para as Ciências Exatas. São Paulo : Atual, 1981.

Disciplina	Física I						
SIGLA	IEF009	CRÉDITOS	5	СН	75	PR	-

OBJETIVOS

Leis de Newton. Trabalho e Energia. Equilíbrio de um corpo. Momento linear. Rotação.

EMENTA

a) Geral:

Desenvolvimento do pensamento científico no campo da Mecânica Racional Newtoniana (Mecânica Clássica), bem como desenvolver a capacidade de raciocínio lógico.

b) Específico:

Dotar o aluno de conhecimentos de cinemática, estática, dinâmica, conservação de energia mecânica e conservação da quantidade de movimento, com solução de problemas práticos, pertinentes ao campo de conhecimento da Engenharia.

REFERÊNCIAS BÁSICAS

HALLIDAY, D.& RESNICK, R. Fundamentos da Física - Gravitação, Ondas eTermodinâmica. Vol 2, Rio de Janeiro: LTC, 1994.

HALLIDAY, D.& RESNICK, R. Fundamentos da Física - Óptica e Física Moderna. Vol4, Rio de Janeiro: LTC, 1994.

RAMALHO, F. et al. Os Fundamentos da Física. Vol. 1, São Paulo: Moderna, 1983.

REFERÊNCIAS COMPLEMENTARES

HEWITT, P. G. Física Conceitual. Editora Brookman, ed. 11. 2011.

SEARS, F. W. ZEMANSKI, M. W. Física - Mecânica e Hidrodinâmica. Vol. 1, Rio deJaneiro: LTC, 1981.

SEARS, F. W. & ZEMANSKI, M. W. Física - Calor, Ondas, Óptica. Vol. 2, Riod e Janeiro:LTC, 1981.

TIPLER, P. A. Física. Vol. 2, Rio de Janeiro: Guanabara Dois, 1978.

TIPLER, P. A. Física para cientistas e engenheiros. Editora LTC, edição 6. 2009.

Disciplina	Cálculo II						
SIGLA	IEM021	CRÉDITOS	6	СН	90	PR	IEM011

OBJETIVOS

O curso visa abordar as técnicas de integração para funções de uma variável, bem como apresentar conceitos relativos a funções de mais de uma variável como: limites, derivação e integração múltipla.

EMENTA

Técnicas de Integração; Aplicações de Integrais; Funções de duas ou mais variáveis;Limites; Continuidade e Derivados Parciais; Integração Múltipla.

REFERÊNCIAS BÁSICAS

ANTON, Howard. Cálculo, um novo horizonte. 6 ed. Volumes I e II. Porto Alegre. EditoraBookman, 2000.

HOFFMANN, Laurence D. Cálculo 1. Vol.1 2ª ed. Rio de Janeiro: LTC Editora, 1994.

LEITHOLD, Louis. O Cálculo com Geometria Analítica. Vol. 1. São Paulo: Harbra, 1994.

REFERÊNCIAS COMPLEMENTARES

EDWARDS, B. H. Cálculo II. Editora Mcgraw-hill Interamericana. Edição 8. 2006.

FLEMMING, Diva Maria, GONÇALVES, Mirian Buss. Cálculo A - Funções, limites, derivação e integração. 5 ed. São Paulo: McGraw-Hill Ltda, 1992.

GERALDO, A. Calculo 2 – Funções de uma variável. Editora LTC ed. 7. 2004.

HOSTETLER, R. P. Cálculo II. Editora McGraww Hill edição 8. 2006.

MUNEM-FOULIS. Cálculo 1. Vol. I. Rio de Janeiro: Guanabara Koogan S.A., 1978.

Disciplina	na Química Analítica Aplicada							
SIGLA	IEQ160	CRÉDITOS	3.2.1	СН	60	PR	IEQ011	

OBJETIVOS

a) Geral:

Apresentar as bases teóricas e práticas da análise qualitativa e proporcionar a identificação de cátions e ânions em seus respectivos grupos de estudo.

b) Específicos:

- Proporcionar o entendimento comportamental de um íon em solução considerando o seu ambiente;
- Apresentar aspectos físico-químicos básicos das reações utilizadas nas análises qualitativas;
- Possibilitar o conhecimento das reações entre íons observando a formação de precipitados na forma complexa e coloidal;
- Conectar conhecimentos teóricos com os conhecimentos práticos;
- A partir da visualização do experimento analítico prático, interpretar, explicar e deduzir;
- Preparar amostras de cátions e ânions e familiarizar-se com o comportamento dos reagentes frente aos reativos de grupo.

EMENTA

Introdução à análise qualitativa; Aplicações, fontes de erro e princípios de cada técnica; Fenômenos de equilíbrio; Reações características de cátions e de ânions; Isolamento, caracterização e respectivas técnicas de separação e identificação; Análises de sais minerais.

REFERÊNCIAS BÁSICAS

DA CUNHA, A. A. V. Manual de Práticas de Química Analítica. Pelotas/RS: Editorada Universidade, 1984.

KING, J. K. Análise Qualitativa - Reações, Separações e Experiências. Rio de

Janeiro: Interamericana, 1981.

VOGEL, A. I. Química Analítica Qualitativa. São Paulo: Ed. Mestre Jou, 1981.

REFERÊNCIAS COMPLEMENTARES

BURRIEL, F, LUCENA, F, ARRIBA, S. Química Analítica Qualitativa. Madrid, 1967

BACCAN, N. Química Analítica quantitativa elementar. Editora Blucher 3ª ed. 2001.

HOLLER, J. F. Fundamentos de química analítica. Editora Pioneira. 2005.

LEITE, F. Práticas de química analítica. Editora Átomo, ed. 4. 2010.

LEPREVOST, A. Química Analítica dos Minerais. São Paulo: LTC Editora S.A., 1975.

3º PERÍODO

Disciplina	Química de	Química de Alimentos							
SIGLA	FGE044	CRÉDITOS	3.2.1	СН	60	PR	-		

OBJETIVOS

Transferir ao aluno conhecimentos sobre a composição química dos alimentos, principais tipos de transformações que neles ocorrem e uma visão geral dos meios de controlar as alterações indesejáveis.

EMENTA

Propriedades da água, atividade de água e seus efeitos na estabilidade de alimentos. Transformações físicas e químicas em proteínas, glicídios e lipídeos. Propriedades funcionais de proteínas, glicídios e lipídeos. Química do sabor e do aroma.

REFERÊNCIAS BÁSICAS

ARAÚJO, J.M.A. Química de Alimentos: Teoria e Prática, 3.ed. Vicosa: UFV, 2004.

BOBBIO, F.O.; BOBBIO, P.A. **Química do Processamento de Alimentos**. 3.ed. São Paulo: Varela, 2001.

DAMODARAN, S.; PARKIN, K.L.; FENNEMA, O.R. **Química de Alimentos de Fennema**. 4.ed. São Paulo: Artmed, 2010.

REFERÊNCIAS COMPLEMENTARES

BELITZ, H.D.; GORSCH, W. Química de los Alimentos. Zaragoza: Editorial Acribia, S.A., 1998.

BELITZ, H. D. - Food Chemistry - Editora Springer Werlag (ISBN: 13-9783540699330)

COULTATE, T. P. - Alimentos: a química de seus componentes. - Editora Artmed (ISBN: 13-9798536304044).

FENNEMA, O.R. Química de Los Alimentos. Zaragoza, España: Editorial Acribia, S.A., 1993.

GAVA, A.J. Princípios de Tecnologia de Alimentos. São Paulo: Nobel, 1998.

MACEDO, GABRIELA ALVES; PASTORE, GLAÚCIA MARIA; SATO, HELIA HARUMI; PARK, YONG KUN - **Bioquímica experimental de alimentos** - Editora Livraria Varela (ISBN: 9788585519926).

MULTON, J. L. - Aditivos y Auxiliares de Fabricación en la Industrias Alimentarias. — Editora Editorial Acríbia (ISBN: 13-9788420006178)

Disciplina	olina Alimentos: Qualidade, Saúde e Nutrição								
SIGLA	FGE046	CRÉDITOS	2.1.1	СН	45	PR	-		

OBJETIVOS

Tornar o aluno apto quanto a compreensão de aspectos básicos do alimento, tais como: aspectos qualitativos, salutares e nutritivos.

EMENTA

Alimentos versus Desenvolvimento das Sociedades. Propriedades funcionais dos Alimentos e seus Principais Constituintes Químicos. Alimentação na Prevenção de Saúde e Prevenção de Doenças. Influências Socioculturais sobre o Comportamento Alimentar. Aplicação dos Conhecimentos de Nutrição nas Intervenções sobre Alimentação. Acesso à Alimentação como Direito Humano que Preenche Necessidades Biológicas, Psicológicas e Sociais, Garantindo Qualidade de Vida a Indivíduos, Grupos e Coletividade. Processamento de Alimentos com Controle de Qualidade.

REFERÊNCIAS BÁSICAS

DUTRA, J.E; MARCHINI, J.S. Ciências Nutricionais: Aprendendo a Apreender. Sarvier Editora, 2008.

MAHAN, L.K; STUMP, S.E. Krause: Alimentos, Nutrição e Dietoterapia. Elsevier Editora, 2010.

SILVIA, M; COZZOLINO, F. Biodisponibilidade de Nutrientes. Manole Editora, 2005.

REFERÊNCIAS COMPLEMENTARES

DE CARVALHO, G.M; RAMOS, A. Enfermagem e Nutrição. EPU Editora, 2005.

KHAYAT, D. A verdadeira deita anticâncer-Todas a Práticas e alimentos Comprovados para combater e impedir a doença. Editora Lua de Papel. 2012.

NETO, F. Nutrição Clínica. Guanabara Koogan Editora, 2003.

PINHEIRO, A. B. V. Tabela para Avaliação de Consumo. Editora Atheneu, 5ª edição. 2004.

VITOLO, M. R. Nutrição – Da gestação ao envelhecimento. Editora Rubio. 2008.

Disciplina	Física II						
SIGLA	IEF019	CRÉDITOS	5	СН	75	PR	IEF009
OBJETIVOS							

Proporcionar ao aluno a fundamentação teórica da Física nas áreas de Mecânica de Fluídos, Termologia e Termodinâmica e óptica , bem com a demonstração de suas leis de forma prática dando condições para que o aluno possa identificar e interpretar qualitativa e quantitativamente os fenômenos físicos relacionados a elas e que possam aplicar o conhecimento adquirido em situações de trabalho que surjam futuramente.

EMENTA

Hidrostática; Hidrodinâmica e Viscosidade; Temperatura: calor, medidas de calor,transmissão de calor; Propriedades térmicas da matéria; Leis da Termodinâmica; Natureza e propagação da luz; Reflexão e refração em superfícies planas;, Formação de imagens;Lentes; Instrumentos ópticos.

REFERÊNCIAS BÁSICAS

HALLIDAY, D.& RESNICK, R. Fundamentos da Física - Gravitação, Ondas eTermodinâmica. Vol 2, Rio de Janeiro: LTC, 1994.

HALLIDAY, D.& RESNICK, R. Fundamentos da Física - Óptica e Física Moderna. Vol4, Rio de Janeiro: LTC, 1994.

RAMALHO, F. et alii. Os Fundamentos da Física. Vol. 1, São Paulo: Moderna, 1983.

REFERÊNCIAS COMPLEMENTARES

CHIQUETTO, M. J. Aprendendo Física 2 – Termica e Ondas. Editora Scipione. 2010.

SAMPAIO, J. L. Universo da Física 2 – Hidrostática, Termologia, Óptica. Editora Atual. 2008.

SEARS, F. W. & ZEMANSKI, M. W. Física - Calor, Ondas, Óptica. Vol. 2, Riod e Janeiro:LTC, 1981

SEARS, F. W. ZEMANSKI, M. W. Física - Mecânica e Hidrodinâmica. Vol. 1, Rio deJaneiro: LTC, 1981.

TIPLER, P. A. Física. Vol. 2, Rio de Janeiro: Guanabara Dois, 1978.

Disciplina	Equações	Equações Diferenciais Ordinárias								
SIGLA	IEM141	IEM141 CRÉDITOS 4 CH 60 PR IEM021								
OR IETIVOS	1		1	ı	ı	ı				

OBJETIVOS

Familiarizar o aluno com a teoria das equações diferenciais ordinárias e desenvolver técnicas de resolução das mesmas.

EMENTA

Equações Diferenciais de Primeira Ordem. Equações Diferenciais Ordinárias, Lineares e de Ordem maior que 1. Coeficientes a Determinar e Variação de Parâmetros. Sistema de Equações Diferenciais Lineares com Coeficientes de Equações e Sistemas. Solução em Série e Potências. Métodos Numéricos.

REFERÊNCIAS BÁSICAS

ANTON, Howard. Cálculo, um novo horizonte. 6 ed. Volumes I e II. Porto Alegre. Editora Bookman, 2000.

BRAUN, M. Equações Diferenciais e suas aplicações, Editora Campus, 1979.

ZILL, D.G., CULLEN, M.R. Equações Diferenciais, V.1,2, Editora Makron Books, São Paulo, 2001, 1979.

REFERÊNCIAS COMPLEMENTARES

BOYCE, W. E. Equações diferenciais elementares e problemas de valores de contorno. Editora gen/LTC. 2006.

BOYCE, W.E.; Di PRIMA, R.C.; Elementary Differential Equations, John Wiley, New York, 1969.

CASSACO JR., H.; LADEIRA, L.A.C. Equações Diferenciais Ordinárias, Notas de aula, ICMC-USP.

GUZMAN, M. Ecuaciones diferenciales ordinarias – Teoria de estabilidadj y control. Madrid, Alhambra. 1975.

KISELIOV, A. Problemas de ecuciones diferenciales ordinarias. Editora Mir Publishing. 1973.

Disciplina	Química Orgânica Básica							
SIGLA	IEQ602	CRÉDITOS	4	СН	60	PR	IEQ011	

OBJETIVOS

Fornecer ao aluno os conhecimentos teóricos e práticos sobre os principais compostos de carbono, de modo que ele possa identificar a estrutura dos principais compostos orgânicos, sua nomenclatura e suas propriedades físicas. Estes conhecimentos servirão de base para a disciplina de Bioquímica e, consequentemente, para outras disciplinas de formação profissional geral e específica.

EMENTA

Compostos de carbono e ligações químicas. Grupos funcionais. Isomeria. Propriedades de hidrocarbonetos, álcoois, éteres e ésteres. Compostos aromáticos. Aldeídos e cetonas. Ácidos carboxílicos e seus derivados. Aminas. Fenóis.

REFERÊNCIAS BÁSICAS

MORRISON, R., BOYD, R., Química Orgânica. Lisboa: LTC, 13a ed., 1996

McMURRY, J. Química Orgânica. Rio de Janeiro: LTC, 4a ed., V.1, 1996.

SOLOMONS, T.W.G. Química Orgânica. Rio de Janeiro: LTC, V.1, 6a ed., 1996.

REFERÊNCIAS COMPLEMENTARES

ALLINGER, N.L., CAVA, M.P. JONGH, D.C., JOHNSON, C.R., LEBEL, N.A., STEVENS, C.L.Química Orgânica. Rio de Janeiro: LTC, 2a ed., 1976.

CONSTANTINO, M. G. Química orgânica. Editora LTC. 2008.

FRYHLE, C. Química orgânica. Editora LTC. 2006

MCMURRY, J. Química orgânica 1. Editora Pioneira. 2004.

Disciplina	Físico-Quí	Físico-Química I							
SIGLA	IEQ634	CRÉDITOS	4	СН	60	PR	IEQ011		

OBJETIVOS

Conhecer e entender aplicações dos fundamentos da Físico-Química.

EMENTA

Gases. Leis da termodinâmica clássica. Espontaneidade e equilíbrio químico.

REFERÊNCIAS BÁSICAS

ATKINS, P.W. Físico-química. Vol. 1, 7ª ed., Livros Técnicos e Científicos (tradução da 7ª Edição Americana), Rio de Janeiro, 2003.

BALL, D. W. Físico-Química, v. 1, 2005, Thomson, 2005. ISSN: 8522104182.

CASTELLAN, G. Fundamentos de Físico-Química. 1. ed., Livros Técnicos e Científicos, Rio de Janeiro, 1986.

REFERÊNCIA COMPLEMENTAR

ALLINGER, N.L., CAVA, M.P. JONGH, D.C., JOHNSON, C.R., LEBEL, N.A., STEVENS, C.L.Química Orgânica. Rio de Janeiro: LTC, 2a ed., 1976.

4º PERÍODO

Disciplina	Fundament	Fundamentos de Eletricidade e instalações na Indústria de Alimentos					
SIGLA	FGE041	CRÉDITOS	3.2.1	СН	60	PR	-

OBJETIVOS

Fornecer ao aluno noções de circuitos elétricos, bem como familiarizá-lo com o uso de equipamentos elétricos e eletrônicos para analisar projetos de instalações de média e baixa tensão e de eficiência energética na indústria de alimentos.

EMENTA

Conceitos básicos e Circuitos elétricos. Aparelhos de medidas. Instalações na Indústria de alimentos. Diagnóstico em instalações elétricas.

REFERÊNCIAS BÁSICAS

Irwin, J.D. Análise de circuitos em engenharia. 4ª Ed. Makron. 2000.

Lamberts, R.; Dutra, L. Perreira, F. O. Eficiência Energética na Arquitetura. São Paulo, 2004

Rodrigues, P. Manual de Iluminação Eficiente. PROCEL, 2002.

REFERÊNCIAS COMPLEMENTARES

CREDER, H. Instalações elétricas prediais. Livros técnicos e Científicos. 2000.

CORDEIRO, M. L. R. Eficiência energética em sistemas de refrigeração industrial e comercial. Livro técnico, Rio de Janeiro. 2005.

EDMINISTER, J.A. Circuitos elétricos. 2ª Ed. Makron. 1991.

GAIO, M. M. Conservação de energia elétrica em sistemas de bombeamento. Rio de janeiro. 2005.

SANTOS, A. H. M. Eficiência Energética: Teoria & Prática. Itajuná. 2007.

Disciplina	Bioquímica Geral						
SIGLA	FGE045	CRÉDITOS	3.2.1	СН	60	PR	IEQ602

OBJETIVOS

Oferecer ao aluno condições de aprendizagem para que ele possa explicar a forma e a função biológica através da química, identificando elementos e substâncias químicas nas células, proporções e mecanismos metabólicos de síntese e degradação de tais substâncias.

EMENTA

Principais constituintes dos alimentos: água, proteínas, aminoácidos, enzimas, carboidratos, lipídios, vitaminas, ácidos nucléicos. Metabolismo de proteínas, lipídios e carboidratos. Regulação metabólica.

REFERÊNCIAS BÁSICAS

RIEGAL, R. E. Bioquímica. 2 ed. São Leopoldo/RS: Unisinos, 2002.

LEHNINGER, Albert L. Bioquímica. 2 ed. São Paulo: Sarvier, 2002.

CAMPBELL, M. K. Bioquímica. Ed. Artmed, 2ª ed. Porto Alegre 2001,752p.

REFERÊNCIAS COMPLEMENTARES

CHAMPE, Panela C.; HARNEY, Richard A. *Bioquímica Ilustrada*. 21 ed. Porto Alegre:Artes Médicas, 1996.

HARPER. Química Fisiológica. 7 ed. São Paulo: Atheneu, 2000..

LAGUNA, José. Bioquímica. 1 ed. São Paulo: Mestre Jou, 1978.

MARZZOLO, Anita. *Bioquímica Básica.* 1 ed. Rio de Janeiro: Koogan, 1990RAW, Isaias. *Fundamentos de Bioquímica.* São Paulo: McGrawHill do Brasil, 1972.

_____. Bioquímica: Fundamentos para Ciências Biomédicas. 1 ed. São Paulo:McGraw Hill do Brasil, 1981.

SMITH, Emil L. Bioquímica - Aspectos Gerais. 11 ed. Rio de Janeiro: Guanabara Koogan, 1985.

Disciplina	Metrologia	Metrologia e Instrumentação					
SIGLA	FGE052	CRÉDITOS	3.2.1	СН	60	PR	-

OBJETIVOS

Mostrar a evolução do processo de medição, sua adaptação à evolução da humanidade e aos progressos tecnológicos e sociais, atendendo às necessidades da sociedade e dos cidadãos e apresentar conceitos gerais de metrologia, que serão utilizadas em outras disciplinas do curso, além de mostrar a crescente importância da metrologia científica, química e industrial para o cidadão, para as indústrias, comércio e para a sociedade como um todo.

EMENTA

Organizações nacionais e internacionais de Metrologia; Processo genérico de medição; Mensurando: Sistema Internacional de unidades; Terminologia metrológica; Parâmetros característicos de métodos analíticos: exatidão, repetibilidade, faixa dinâmica, robustez, limite de detecção e quantificação. Erro de medição; Incerteza de medição; Resultado de medição; Tolerância do mensurando; Qualificação do sistema de medição: calibração, ajuste, regulagem, verificação; Métodos de calibração; Procedimentos de calibração; Certificado de calibração; Hierarquia de calibração e rastreabilidade de padrões.

REFERÊNCIAS BÁSICAS

ARMANDO ALBERTAZZI G.Jr e André R. de Sousa, Fundamentos de Metrologia Científica e Industrial, editora Manole-2008.

DIAS, José Luciano de Mattos. Medida da Normalização e Qualidade: Aspectos da história da metrologia no Brasil. Rio de Janeiro, 1998.

NEVES, A. R. Análise de alimentos: Métodos químicos e biológicos. Editora Varela. 2002.

REFERÊNCIAS COMPLEMENTARES

ANDRADE, E. C. B. Análise de alimentos – uma visão química de nutrição. Editra Varela. (978-85-7759-007-0).

CECCHI, H. M. Fundamentos Teóricos e Práticos em Análise de Alimentos. Editora UNICAMP

INMETRO - Vocabulário Internacional de Metrologia: conceitos fundamentais e gerais e termos associados (VIM 2008). 1ª Edição Brasileira. Rio de Janeiro, 2009.

INMETRO - Sistema Internacional de Unidades - SI. 8. Ed. Rio de Janeiro, 2003. 116p. Padroes e Unidades de Medida: Referências Metrológicas da Franca e do Brasil, Frota, M.N., Ohayon, P. & Maguellone Chambon (BNM/Franca), editado na França e impresso no Brasil por editora Qualitymark, 1999.

Disciplina	Balanço Ma	Balanço Material e Energético					
SIGLA	FGE056	CRÉDITOS	3.2.1	СН	60	PR	-

OBJETIVOS

Capacitar o discente a efetuar, com destreza, balanços de massa, de energia eentropia em equipamentos ou processos da Indústria Alimentícia.

EMENTA

Balanço material. Balanço de energia. Balanço de Entropia. Aplicações de Balanços Materiais, Energia e Entropia combinados. Balanço Material e energético em estado não estacionário.

REFERÊNCIAS BÁSICAS

FELDER, R. M.; ROUSSEAU, R. Elementary Principles of Chemical Process, John Wiley & Sons, New York, 1986.

HIMMELBLAU, D. M., Engenharia Química – Princípios e Cálculos. 4ª ed., Rio deJaneiro – RJ, Prentice Hall do Brasil, 1982.

VALIENTE, A., Problemas de Balance de Materia y Energia em la IndustriaAlimentaria. 1ª ed., México, Limusa Editora, 1998.

REFERÊNCIAS COMPLEMENTARES

BALZHISER, R.E.; SAMUELS, M.R.; ELIASSEN, J.D. Chemical EngineeringThermodynamics. Prentice-Hall, Inc., New Jersey, 1972.

BRASIL, N. I. Introdução a Engenharia química. Editora Interciencia. 2004.

CREMASCO, M. A. Vale a pena estudar engenharia química. Editora Blucher. 2010.

REIS, L. B. Matrizes Energeticas: Conceitos e Usos em gestão de Planejamento Série Sustentabilidade. Editora Manole. 2011.

SINGH, R. P.; HELDMAN, D. R. Introduction to Food Engineering. 2 ed. New York. Academic Press, 1993.

Disciplina	Microbiologia Geral						
SIGLA	FGF032	CRÉDITOS	3.2.1	СН	60	PR	-

OBJETIVOS

Possibilitar ao acadêmico o estudo da morfologia, reprodução e fisiologia dos microorganismos, reconhecer a importância da microbiologia para o homem e o meio ambiente e sua aplicação principalmente na área de alimentos.

EMENTA

Classificação dos seres vivos. Crescimento e morte de microorganismos. Fatores que afetam o desenvolvimento dos microorganismos. Morfologia, fisiologia, genética e reprodução bacteriana. Morfologia, fisiologia e reprodução de fungos filamentosos e leveduras. Ciclos da matéria orgânica. Principais meios de cultura e técnica de contagem. Princípios de esterilização, assepsia e higiene dos alimentos.

REFERÊNCIAS BÁSICAS

FRANCO, B. D. G. de Melo; LANDGRAF, M.; **Microbiologia dos Alimentos**. São Paulo: Editora Atheneu, 1996.

PELCZAR, Michael J.; CHAN, E. C. S. KRIEG, Noel R. Microbiologia: Conceitos e aplicações. Vol I e II, 2ª Ed São Paulo. Makron Books, 1996.

SILVA, N.; JUNQUEIRA, V. C. A.; SILVEIRA, N. F. A. **Manual de métodos de análises microbiológica de Alimentos**. São Paulo: Varela, 1997.

REFERÊNCIAS COMPLEMENTARES

ATLAS, R.; BARTHA, R. Microbial Ecology, 3.ed., Benjamin/Cummings, 1992.

BROCK, T.D.; MADIGAN, M.T.; MARTINKO, J.M.; PARKER, J. **Biology of Microorganisms**, 7.ed., New Jersey: Prentice Hall, 1994.

FRAZIER, W.C.; WESTHOFF, D.C. Microbiologia de los Alimentos, Editorial Acribia, 1985.

ICMSF.Micro-organismos de los Alimentos, Editorial Acribia, 1983.

JAY, J. M. Microbiologia moderna de los alimentos, 2.ed., Acríbia, 1978.

NEDER, R.N. Microbiologia - Manual de Laboratório. São Paulo: Nobel, 1992.

PELCZAR, Jr. M.J.; CHAN, E.C.S.; KRIEG, N.K. **Microbiology: concepts andaplications**. New York: McGraw-Hill, 1993.

ROITMAN, I.; TRAVASSOS, L. R.; AZEVEDO, J.L. *Tratado deMicrobiologia* vol. 1 e 2 . *São Paulo:* Manole, *1987.*

SILVA Jr., E.A. **Manual de controle higiênico-sanitário em alimentos**, 2.ed., São Paulo: Varela, 1996.

SILVA, N.; JUNQUEIRA, V.C.A.; SILVEIRA, N.F.A. **Manual de métodos de análise microbiológica de alimentos**, São Paulo: Varela, 1997.

VANDERZANT, C.; SPLITTSTOESSER, D.F. Compendium of methods for microbiological examination

Disciplina	Fenômeno	de Transporte I					
SIGLA	FTQ021	CRÉDITOS	4.4.0	СН	60	PR	IEF009

OBJETIVOS

Fornecer os fundamentos da Mecânica dos Fluidos visando a resolução de problemas relacionados à estática e escoamento de fluidos incompressíveis

EMENTA

Estática e cinemática de fluidos. Equações gerais da dinâmica dos fluidos. Análise dimensional e similaridade. Escoamento laminar e turbulento. Camada limite. Escoamento irrotacional. Escoamento em Dutos.

REFERÊNCIAS BÁSICAS

BENNETE. Fenômenos de Transporte. 5. ed. Rio de Janeiro: LTC, 1996.

GEANKOPLIS, C. J., Transport Processes and Unit Operations, 3rd ed., Prentice-Hall International, Inc., 1993.

BIRD, R. B.; STEWART, W. E., LIGHTFOOT, E. N., Transport Phenomena, John Wiley & Sons, Inc., 1960.

REFERÊNCIAS COMPLEMENTARES

FOX, Alan T. McDonald. Introdução à Mecânica dos Fluídos. 4 ed. Rio de Janeiro:Livros Técnicos e Científicos, 1995.

PORTO, R. M. Hidráulica Básica, Publicação EESC-USP, São Carlos, São Paulo, SP, 1998.

SISSOM, L. E.; PITTS, D. R. Fenômenos de Transporte. Rio de Janeiro: Guanabara, 1988.

Disciplina	Físico-quín	Físico-química experimental					
SIGLA	IEQ363	CRÉDITOS	2.0.2	СН	60	PR	-

OBJETIVOS

Desenvolver práticas experimentais que enfatizem fenômenos físico-químicos de termodinâmica química, equilíbrios químicos, propriedades coligativas e cinética química de reações.

EMENTA

Métodos de mínimos quadrados. Práticas experimentais aplicadas em termodinâmica química (calores de reação), equilíbrios químicos, propriedades coligativas e cinética química de reações.

REFERÊNCIAS BÁSICAS

ATKINS, P. W. *Physical Chemistry*. 5ª ed., Oxford, Oxford University Press, 1994.Sétima edição em português.

CHAGAS, Aécio P. Termodinâmica Química. Editora da Unicamp, Campinas, 1999.

RENATO, N. Rangel. Práticas de Físico-Química, Editora Edgard Blucher, 2006.

REFERÊNCIAS COMPLEMENTARES

BUENO, L.Degreve. Manual de Laboratório de Físico-Química, McGraw-Hill do Brasil,1980.

G. W. Castellan. Físico-Química, Ao livro Técnico SA, Rio de Janeiro, 1972, volumes 1 e 2.

5º PERÍODO

Disciplina	Bioquímica de Alimentos

SIGLA	FGE053	CRÉDITOS	3.2.1	СН	60	PR	FGE045

OBJETIVOS

Possibilitar ao aluno a constatação de que a matéria-prima é algo dinâmico e que suas transformações devem ser conhecidas e dirigidas visando à obtenção de produtos industrializados de elevada qualidade.

EMENTA

Estudo nos alimentos da atividade de água, escurecimento não enzimático e enzimático, enzimas, oxidação lipídica, bioquímica da maturação das frutas, bioquímica da carne e sistema coloidal..

REFERÊNCIAS BÁSICAS

BOBBIO, P A; BOBBIO, F.O. **Química do Processamento de Alimentos.** Livraria Varela 2° Ed. São Paulo,1999.

CHEFTEL, J.C. e CHEFTEL, H. Introdução a Bioquímica e Tecnologia de Alimentos. Vol 1 e 2, Ed. Ecribia, 1998.

CONN E.E. e STUMPF, P.K. Introdução à Bioquímica. Ed. Edgard Blucher, 1990.

REFERÊNCIAS COMPLEMENTARES

ARAÚJO, M. A J Química de Alimentos: teoria e prática. 2, ed. Editora UFV. Viçosa MG.

BELITZ, H.D.; GORSCH, W. Química de los Alimentos. Editorial Acribia, S.A. Zaragoza, 1997.

BERK, Z. Introduction to the Biochemistry of Food. Elsevier Scientific Publishing Company, 1995.

BOBBIO, F. O. BOBBIO, P.A. Introdução à Química de Alimentos. Livraria Varela, São Paulo, 1989.

CHEFTEL, J.C.; CUQ, J.L.; LORIENT, D. **Proteínas Alimentarias**. Editorial Acribia, S.A. Zaragoza, 1989.

ESKIN, N.A.M, HENDERSON, H.M. e TOWSEND, R.J. **Biochemistry of Food**. Academic Press, 1999.

FELLOWS, P. **Tecnología del procesado de los alimentos: Principios y prácticas**. Editorial Acribia, AS Zaragoza 1994.

FENNEMA, R, Food Chemistry. Vol. 1 e 2. Ed. Marcel Dekker, 1996.

FINLEY, R. Chemical Changes em Food During Processing. Van Nostrand Reinhold Company, New York (EUA), 1985.

LIMA, U.A., AQUARONE, E e BORSANI, W. **Biotecnologia, Tecnologia das Fermentações**. Ed. Edgard Blucher, 1995.

LINDEN, G.; LORIENT, D. Bioquímica Agroindustrial. Editorial Acribia, S.A.Zaragoza, 1996.

MEYER, L.H. Food Chemistry. The Avi. Publishing Company ed., 1992.

PRICE, J.F.; SCHWEIGERT, B. S. Ciencia de la carne y de los Productos Cárnicos. Editorial Acribia, S.A. Zaragoza, 1994.

ROBINSON, D.S. **Bioquímica y Valor Nutritivo de los Alimentos**. Editorial Acribia, S.A. Zaragoza, 1991.

SGARBIERI, V. C. Proteínas em Alimentos Protéicos. Livraria Varela, São Paulo, 1996.

WATSON, J.D. at all. Molecular Cell Biology. New York: Garland Publishing Inc., 1989. 2 nd . Ed. 1219p.

WISEMAN, A. Manual de Biotecnologia de las Enzimas. Acribia. Zaragoza (Espanha), 1991.

Disciplina	Termodina	âmica					
SIGLA	FGE054	CRÉDITOS	3.2.1	СН	60	PR	IEQ602

OBJETIVOS

Fornecer ao aluno conhecimentos básicos de um ramo da física, preparatórios às disciplinas de Operações Unitárias e de Fenômeno de Transportes. Explorar com maiores detalhes as relações existentes entre temperatura, pressão e volume para as substâncias puras e misturas, abordando aspectos qualitativos (descrição de diagramas), teóricos (modelagem) e experimentais (práticos em laboratório)

EMENTA

Escopo e conceitos do equilíbrio de fases. Função geradora de Gibbs residual: fugacidade, coeficiente de fugacidade. Equações de estado:virial e suas extensões; van der Waals e suas extensões. Função geradora de Gibbs em excesso: coeficiente de atividade, atividade e estados padrões. Aplicação de métodos de contribuição de grupos à estimativa de propriedades físico-químicas. Cálculo e métodos experimentais de determinação de dados de equilíbrio de fases em sistemas bifásicos e multifásicos. Noções de engenharia molecular.

REFERÊNCIAS BÁSICAS

ABBOTT, M. M. VAN NESS, H. C. Termodinâmica. Editora McGraw-Hill Ltda. 1992.

SMITH,J.M.VAN NESS,H.C.ABBOTT,M.M. Introdução à Termodinâmica da Engenharia Química. LTC Editora. 2000.

VAN WYLEN,G.J. &SONNTAG,R.E. Fundamentos da Termodinâmica Clássica. Editora Edgard Blücher Ltda. 1976.

REFERÊNCIAS COMPLEMENTARES

CHAO, K.C.; GREENKORN, R.A. Thermodynamics of Fluids, Marcel Dekker, Inc., 1975.

PÁDUA, A. B. Termodinâmica: Uma coletânea de Problemas. Editora Física, edição 1. 2006,

POTTER, M. C. Termodinâmica. Editora Cengage. 2007.

WRESZINSKI, W. F. Termodinâmica. Editora Edusp. 2003.

VAN NESS, H.C.; ABBOTT, M.M. Classical Thermodynamics of Non electrolyte Solutions, McGraw-Hill Book Company, 1982.

Disciplina	Engenharia de Segurança							
SIGLA	FGE062	CRÉDITOS	3.2.1	СН	60	PR	FGE052	

OBJETIVOS

Proporcionar noções básicas de agentes e processos de limpeza e sanitização e de uso de aditivos e coadjuvantes em processamento de alimentos em geral; Examinar e discutir de forma reflexiva e analítica a importância da metrologia, normalização e regulamentação técnica em cadeias agroindustriais; Conhecer e analisar questões de segurança e qualidade nas cadeias produtivas de alimentos de origem animal e vegetal; Examinar e discutir a importância da avaliação da conformidade e de seus mecanismos para a competitividade e sustentabilidade do agronegócio nacional e sua inserção no mercado internacional.

EMENTA

Higiene industrial: Agentes e processos de limpeza e sanitização; Controle sanitário e contaminação; Terminologia dos detergentes; Estudo do uso de aditivos e coadjuvantes em processamento de alimentos em geral; Importância tecnológica, funcional, nutricional e legislação dos mesmos; A importância do agronegócio para a dinâmica socioeconômica mundial e brasileira. Panorama das principais cadeias produtivas do agronegócio no Brasil. Competitividade e sustentabilidade do agronegócio nacional e sua inserção no mercado internacional. Importância da metrologia, normalização e regulamentação técnica em cadeias agroindustriais. Segurança e qualidade nas cadeias produtivas de alimentos de origem animal e vegetal. Regulamentação internacional sobre segurança dos alimentos. O código internacional Codex Alimentarius. Implementação de Sistemas APPCC (Análise dos Perigos e Pontos Críticos de Controle), de acordo com os princípios do Codex Alimentarius. Avaliação da conformidade e Certificação agrícola.

REFERÊNCIAS

BATALHA, M. O. (coord.) Gestão Agroindustrial. São Paulo: Ed. Atlas. 2a Ed., 2001, pp. 465-517.

SCARE, R. F.; ZYLBERSZTAJN, D.; (Orgs.) Gestão da qualidade no agribusiness: estudos e casos. São Paulo: Editora Atlas, 2003.

MENDES, J. T.G.; PADILHA Jr., J. Agronegócio: uma abordagem econômica. Prentice Hall Brasil, 2007.

REFERÊNCIAS COMPLEMENTARES

ANTUNES, A. J.; CANHOS, V.P. Aditivos em alimentos. São Paulo: Secretaria da Indústria, Comércio, Ciência e Tecnologia, 1996.

BRASIL, Ministério da Agricultura. Regulamento da Agricultura. Regulamento da inspeção industrial e sanitária de produtos de origem animal, Brasília, 1980.

CONCEIÇÃO, J.; BARROS, A. L. M. Certificação e rastreabilidade no agronegócio: instrumentos cada vez mais necessários. Texto para discussão nº 1122. Brasília: IPEA, 2005.

PENTEADO, Silvio Roberto. Certificação agrícola: selo ambiental e orgânico. Via Orgânica, 2009

ZIBETTI, D. W. Agroindústria. Editora Leud. 2009.

Disciplina	Fenômenos o	Fenômenos de Transporte II					
SIGLA	FGE064	CRÉDITOS	3.2.1	СН	60	PR	FT021

OBJETIVOS

Fornecer os conceitos fundamentais envolvidos na Transferência de Calor que permitam a análise de processos e o projeto de equipamentos onde esses fenômenos de transporte sejam importantes e realizar estudos com aplicações em Engenharia de Alimentos.

EMENTA

Transferência de calor por condução, convecção e radiação. Analise térmica em trocas de calor Estudo da transferência de calor em regime estacionário e transiente. Análise dimensional.

REFERÊNCIAS BÁSICAS

BENNETT, C.O. & MYERS, J.E. Fenômenos de Transporte. Mcgraw Hill, São Paulo, SP, 1978.

CREMASCO, M. A., Fundamentos de Transferência de Massa, 1ª ed., Editora da UNICAMP, 1998.

INCROPERA, F. P.; DEWITT, D. P., Fundamentos de Transferência de Calor e Massa, 3ª ed., Guanabara Dois, 1992.

REFERÊNCIAS COMPLEMENTARES

BRASIL, N. I. Introdução a engenharia química. Editora Interciencia.

CATTANI, Mauro. Elementos da Mecânica dos Fluidos. Edgard Blucher, São Paulo, SP, 1990.

EVANGELISTA, J. Tecnologia de alimentos. Editora atheneu. 2001.

GEANKOPLIS, C. J., Transport Processes and Unit Operations, 3rd ed., Prentice-Hall International, Inc., 1993.

SHAMES, Irving M. Mecânica dos Fluidos - Princípios básicos. 2ª ed., vol. 1, Edgard Blucher, São Paulo, SP, 1973.

SHAMES, Irving M. Mecânica dos Fluidos. 3ª ed., vol. 2, Edgard Blucher, São Paulo, SP, 1962.

SHERWOOD, T. K., PIGFORD, R. L.; WILKE, C. R., Mass Transfer, McGraw-Hill Book Co.,1985.

SOUZA, J. P. Aumente o tempo de conservação dos alimentos e obtenha maiores lucros. Editora

Impresa livre. 2011.

YONG, Donald. MUNSON, Bruce. OKISHI, Teodore. Fundamentos da Mecânica dos Fluidos. 2ª ed., Edgard Blucher, São Paulo, SP, 2000.

Disciplina	Operações	Unitárias I					
SIGLA	FGE073	CRÉDITOS	3.2.1	СН	60	PR	IEQ363

OBJETIVOS

Identificar as diferentes Operações Unitárias que envolvem Transporte de Quantidade de Movimento e Separações Mecânicas, suas particularidades e características próprias, e aplicar os procedimentos de cálculo relacionados ao seu dimensionamento e/ou com a análise de situações operacionais.

EMENTA

Equipamentos para o transporte de fluidos: bombas, válvulas, compressores. Dinâmica de partículas. Colunas de recheio. Fluidização. Transporte hidráulico e pneumático. Filtração. Sedimentação. Centrifugação. Tratamento e separação de sólidos. Precipitação eletrostática. Flotação. Agitação e mistura.

REFERÊNCIAS BÁSICAS

FOUST et al. Príncipios das Operações Unitárias. Editora LTC. 1982.

GOMIDE, R. Operações Unitárias. Edição do Autor, 1º e 3º vol., 1980.

MADRID, A.; CENZANO, I.; VICENTE, J. M. Manual de indústrias dos alimentos. São Paulo: Varela, 1996. 599p.

REFERÊNCIAS COMPLEMENTARES

BOBBIO, P. A;& BOBBIO, F. O. Química do processamento de alimentos. São Paulo: Varela, 1992. 151p.

EARLE, R. L. Ingenieria de los alimentos. Zaragoza: Acribia, 1967. 331p.

FOUST, A.S.; WENZEL, L.A.; CLUMP, C.W.; MAUS, L.; ANDERSEN, L.B. Principles of Unit Operations, 2nd ed., John Wiley & Sons, 1980.

FELLOWS, P. Food processing technology: Principles and practice. London: Ellis Horwood, 1988. 505p.

GEANKOPLIS, C. J. Transport processes and unit operations. London: Allyn and Bacon, 1978. 650p.

MAFART, P. Ingeniería industrial alimentaria. V 1, Rio de Janeiro: Varela, 1993. 308p.

MAFART, P. Ingeniería industrial alimentaria. V 2, Rio de Janeiro: Varela, 1994. 292p.

MASSARANI, G. Filtração. Rio de Janeiro: Publicação didática, COPPE/UFRJ, 1978.

MASSARANI, G. Problemas em Sistemas Particulados. Editora Edgard Blucher Ltda, 1984.

MASSARANI G. Fluidodinâmica em Sistemas Particulados. Rio de Janeiro: Editora UFRJ, 1997.

McCABE, W. L.; SMITH, J. C.; HARRIOTT, P. Unit Operations of Chemical Engineering, 5 th ed., McGraw-Hill International Editions, 1993.

Disciplina	Microbiologiade Alimentos						
SIGLA	FGF033	CRÉDITOS	3.2.1	СН	60	PR	FGF032

OBJETIVOS

Tornar o aluno apto ao conhecimento de definições e processos mais complexos que envolvem a microbiologia alimentar aplicada aos processos laboratoriais em indústrias de alimentos.

EMENTA

Crescimento dos microrganismos em alimentos: parâmetros intrínsecos e extrínsecos. Infecções e intoxicações alimentares. Métodos gerais de preservação de alimentos. Microbiologia das matérias primas e produtos processados. Padrões microbiológicos e APPCC. Indicadores microbiológicos. Microbiologia das águas. Exames microbiológicos dos alimentos.

REFERÊNCIAS BÁSICAS

FRANCO, B.D.G.M.; LANDGRAF, M. Microbiologia dos Alimentos. São Paulo: Atheneu, 1996.

JAY, J.M. Microbiologia Moderna de los Alimentos. Zaragoza, Espanha: EditorialAcribia, 1995.

SILVA, N.; JUNQUEIRA, V.C.A.; SILVEIRA, N.F.A. Manual de Métodos de AnáliseMicrobiológica de Alimentos. São Paulo: Livraria Varela, 1997.

REFERÊNCIAS COMPLEMENTARES

ALTERTHUM, F. Microbiologia. Editora Atheneu. 2008.

FRANCO, B. D. G. M. Microbiologia dos alimentos. ISBN (8573791211).

FRAZIER, W.C.; WESTHOFF, D.C. Microbiologia de los Alimentos. Zaragoza, Espanha:Editorial Acribia, 1993.

JAY, J. M. Microbiologia de alimentos. Editora Artmed. 2005.

ANVISA. Legislações vigentes sobre Padrões Microbiológicos para Alimentos.

Disciplina	Economia e Administração Agroalimentar

SIGLA FGF034 C	CRÉDITOS 3.2.1	CH 60	PR	IEM011
----------------	----------------	--------------	----	--------

OBJETIVOS

Conhecer conceitos e metodologias utilizados nas análises econômicas da atividade agronegocial; Compreender as inter-conexões ente os fatores de produção e sua influência no resultado da atividade agronegocial; Analisar o funcionamento dos mercados de produtos agroindustriais e as transformações recentes no cenário internacional e os efeitos sobre os mercados agroindustriais.

EMENTA

Noções dos conceitos básicos de economia e suas implicações no agronegócio, enfatizando a interrelação entre os fatores de produção na produção e realização da atividade econômica. Comercialização no agronegócio: conceitos, funções e instituições. Formação de preços e margens de comercialização. Estrutura, conduta e desempenho dos mercados. Condições que afetam a oferta e a demanda de produtos agroindustriais. Alocação de recursos nas dimensões espacial, temporal e vertical.O funcionamento dos mercados no contexto de transformações no cenário internacional: protecionismo, liberalização dos mercados e integração regional. Efeitos distributivos. Administração de empresas.

REFERÊNCIAS BÁSICAS

BATALHA, Mário Otávio (Coordenador). Gestão Agro-industrial. São Paulo, Atlas, 2001.

MENDES, Judas Tadeu Grassi. Economia Agrícola. Curitiba, ZNT, 1998.

ZYLBERSZTAJN, D. e NEVES, M. (Orgs.) Economia e Gestão dos Negócios. Agroalimentares. São Paulo: Pioneira, 2000.

REFERÊNCIAS COMPLEMENTARES

BRESSER PEREIRA, Luis Carlos. Desenvolvimento Econômico e o Empresário. *Revista de Administração de Empresas*, v. 32, n. 3, pp. 6-12, 1992. (anexado)

CHANLAT, Jean François. Quais Carreiras e Para Qual Sociedade? *Revista de Administração de Empresas*, v. 35, n. 6, pp. 67-75, 1995. (anexado)

COSTA, Maira. O Bonito é Ser Pequeno? Revista Exame, 28 de julho de 1999.

ROSSETI, José Paschoal. Introdução à Economia. São Paulo, Atlas,1985.

6º PERÍODO

Disciplina	Engenharia e Ciência do Ambiente								
SIGLA	FGE048	FGE048							
OBJETIVOS									

Apresentar ao aluno uma revisão dos principais conceitos de ecologia e o meio ambiente preparando-o para atuar de maneira consciente e responsável nas questões ambientais como profissional e cidadão.

EMENTA

Ecossistemas, biodiversidade, evolução, fluxo de energia, ciclos biogeoquímicos, dinâmica de populações, gestão ambiental, o engenheiro e o meio ambiente.

REFERÊNCIAS BÁSICAS

ALMEIDA, L. R. de et al. Gestão Ambiental: planejamento, avaliação,implantação, operação e verificação. Rio de Janeiro: Trex, 2000, 259p.

RICKLEFS, R. E. 1996. A economia da natureza: um livro-texto em ecologia básica.3a edição. Rio de Janeiro, Guanabara Koogan. 470 p.

ROCCO, R. Legislação Brasileira do meio ambiente. Rio de Janeiro: DP&A. 2002. 283p.

REFERÊNCIAS COMPLEMENTARES

FERREIRA, L. C. A questão ambiental na América Latina. Editora UNICAMP. 2011.

IRINEU, B. J. Ciências do ambiente: Conceitos básicos em ecologia e poluição. ISBN (978-85-7600-202-4).

MILLER, G. T. Ciência ambiental. Editora Thomson Pioneira, edição 1. 2006.

ODUM, E. P. 1988. *Ecologia*. 2a edição. Rio de Janeiro, Editora Guanabara. 434 p.

ODUM, E. P. 1997. *Fundamentos de ecologia*. 5a edição. Lisboa, Fundação Calouste Gulbenkian. 927 p.

Disciplina	Fenômeno	Fenômeno de Transporte III							
SIGLA	FGE068	CRÉDITOS	3.2.1	СН	60	PR	FGE054		

OBJETIVOS

Apresentar os fundamentos básicos de transferência de massa de forma a reunir os conceitos físicos e matemáticos e realizar estudos com aplicações em Engenharia de Alimentos.

EMENTA

Difusividade e mecanismos de transferência de massa. Balanços de massa. Difusão em regime permanente sem reação química. Difusão com reação química. Difusão em regime transiente. Transferência de massa por convecção. Transferência de massa entre fases.

REFERÊNCIAS BÁSICAS

BENNETT, C. O; MYERS, J. E. Fenômenos de Transporte: quantidade de movimento calor e massa. São Paulo: McGrawHill, 1978. 812 p.

Cremasco, M. A., "Fundamentos de Transferência de Massa", 1ª ed., Editora da UNICAMP,1998.

Incropera, F. P. e DeWitt, D. P., "Fundamentos de Transferência de Calor e Massa", 3a ed., Guanabara Dois, 1992.

REFERÊNCIAS COMPLEMENTARES

BIRD, R. B.; STEWART, W. E.; LIGHTFOOT, E. N. Transport Phenomena. New York: John Wiley & Sons. 1960. 780 p.

FAHIEN, R. W. Fundamentals of Transport Phenomena. New York: McGrawHill. 1983.614 p.

KERN, Donald A. Processos de transmissão de calor. Rio de Janeiro: GuanabaraCoogan, 1987.

KREITH, Frank. Princípio da transmissão de calor. 6ª ed. São Paulo: Edgard Blucher, 1977.

MOURA, Reinaldo Aparecido. Manual de Movimentação de Materiais. V. 1 e 2. 3ªed. São Paulo: IMAM, 1990.

SISSOM, L E.e PITTS D. R. Fenômenos de transporte. Rio de Janeiro: Guanabara, 1988.

TREYBAL, R. E. Mass Transfer. Operations. 3^a ed. Singapore. McGraw-Hill Book Company. 1981. 284 p.

WELTY, J. R.; WICKS, C. E.; WILSON, R. E. Fundamentals of Momentam, Heat, and Mass Transfer. 3^a ed. New York. John Wiley &sens. 1984. 803 p.

Disciplina	Análise de A	Análise de Alimentos						
SIGLA	FGE069	CRÉDITOS	3.2.1	СН	60	PR	FGE052	

OBJETIVOS

Instruir o aluno sobre os fundamentos da análise de alimentos, capacitando-o para estruturar um laboratório de análise de alimentos, com vistas a resolver problemas específicos na indústria ou na pesquisa.

EMENTA

Controle de qualidade na indústria de alimentos. Métodos instrumentais de análise. Análise de produtos da indústria de alimentos e bebidas. Legislação sobre alimentos. Normas técnicas relativas a alimentos e bebidas. Amostragem e preparo de amostras. Determinação química e física dos constituintes principais(umidade, conteúdo mineral, proteínas, lipídios, fibras, sais minerais e vitaminas). Acidez e pH. Contaminantes. Micotoxinas. Pesticidas e outros. Refratometria. Densitometria. Métodos avançados de análise de alimentos por cromatografia, espectrofotometria, etc.

REFERÊNCIAS BÁSICAS

HART, F.L.; FISCHER, H.J. Analisis Moderno de Alimentos. Zaragoza. Ed. Acribia, 1987.

INSTITUTO ADOLFO LUTZ. Determinações gerais In: Normas Analíticas do Instituto Adolfo Lutz. São Paulo, 1985.

PEARSON, D. Técnicas de Laboratório para Análises de Alimentos. Zaragoza. Ed. Acribia, 1986.

REFERÊNCIAS COMPLEMENTARES

ALMEIDA, M. Vigilância Sanitária: Tópicos sobre lesgislação e Análise de Alimentos. Editora Guanabara Koogan. 2007.

FREITAS, R.J.S. et all. Técnicas Analíticas de Alimentos. Curitiba, Instituto de Tecnologiado Paraná, 1979.

CECCHI, H. M. Fundamentos teóricos e práticos em análise de alimentos. UNICAMP.

SILVA, D. J. Análise de Alimentos. Editora UFV.

Disciplina	Operações	Operações Unitárias II							
SIGLA	FGE078	CRÉDITOS	3.2.1	СН	60	PR	FGE073		

OBJETIVOS

Identificar as diferentes Operações Unitárias que envolvem princípios termodinâmicos, suas particularidades e características próprias, e aplicar os procedimentos de cálculo relacionados ao seu dimensionamento e/ou com a análise de situações operacionais.

EMENTA

Destilação. Extração. Lixiviação. Absorção. Operações em estágios e em colunas de recheio.

REFERÊNCIAS BÁSICAS

FOUST A. S; WENZEL, L.A.; CLUMP, C.W.; MAUS, I.; ANDERSEN, L.B..Princípios das Operações Unitárias. Editora Guanabara Dois S.A., 1982.

KERN, Donald Q. Processos de Transmissão de Calor. Editora Guanabara Dois,1982.

McCABE, W. L.; SMITH, J. C.; HARRIOTT, P. Unit Operations of Chemical Engineering.4 ed. New York McGraw Book Company. 1985.

REFERÊNCIAS COMPLEMENTARES

GEANKOPLIS, C. J. Transport processes and unit operations. London: Allyn and Bacon, 1978. 650p.

HELDMAN, D. R. Food Process Engineering. Westport. Avi Plublishing Company, 1975.

MADRID, A.; CENZANO, I.; VICENTE, J. M. Manual de indústrias dos alimentos. São Paulo: Varela, 1996. 599p.

PERRY, R. H.; CHILTON, C. H. Chemical Engineers. Hand Book, Tokyo, 1973.

SINGH, R. P.; HELDMAN, D. R. Introduction to Food Engineering. 2 ed. New York. Academic Press, 1993.

Disciplina	Biotecnologia	a Aplicada à Indi	ústria de A	limentos			
SIGLA	FGF011	CRÉDITOS	2.1.1	СН	60	PR	-

OBJETIVOS

Fornecer ao aluno o conhecimento sobre a aplicação da biotecnologia na produção e controle de qualidade de alimentos.

EMENTA

Estudo de microorganismos para aplicação em processos de produção biotecnológica de aditivos e insumos para indústria de alimentos e farmacêutica. Biotransformação na indústria vinícola, sucroalcooleira, indústria de frutas e lacticínios. Obtenção de alimentos funcionais por biotransformação. Estudo das principais técnicas de biologia molecular e Engenharia Genética e aplicação biotecnológica em alimentos. Produção de enzimas para aplicações na indústria de alimentos. Desenvolvimento de biosensores enzimáticos. Desenvolvimento de "kits" enzimáticos para análises. Biotecnologia de Plantas. Aditivos de Alimentos produzidos pela Biotecnologia e suas aplicações. O uso de detergentes biológicos biodegradáveis. Alimentos modificados geneticamente (confronto étnico e tecnológico). Biossegurança de Alimentos derivados da Biotecnologia r DNA. Biotecnologia no Século XXI - Perspectivas na área de Alimentos.

REFERÊNCIAS BÁSICAS

AQUARONE, E.; BORZANI, W.; SCHMIDELL, W. e de ALMEIDA LIMA, U. Biotecnologia Industrial- Biotecnologia da Produção de Alimentos - Volume 4Editora Edgard Blucher, 1995.

BECKER, J. Biotecnoloiga – Curso de práticas em laboratório. Editora Acribia Espanha. 1999.

BINSFELD, P. C. Biossegurança em Biotenologia. Editora Interciência.2004.

REFERÊNCIAS COMPLEMENTARES

BAILEY, J. E., OLLIS, D. F. - Biochemical engineering fundamentals. 2 ed., 1986.

BRIGGS, D. E.;. BOULTON, C. A.; BROOKES, P. A. and STEVENS, R. Brewing Science and

practice. CRC Press, 2004.

GUTIÉRREZ-LÓPEZ, G.F and BARBOSA-CÁNOVAS, G V. Food science and food biotechnology. CRC Press, 2004.

NEESER, JR and GERMAN, BJ. Bioprocesses and Biotechnology for Functional Foods and Nutraceuticals, 2004.

Disciplina	Sociologia	a do Trabalho					
SIGLA	FGF040	CRÉDITOS	2.1.1	СН	45	PR	FGF034

OBJETIVOS

- 1. Propiciar ao aluno os conceitos mais básicos da sociologia. Desenvolver no aluno a capacidade de identificar tais conceitos nos processos e experiências sociais por ele vivenciados. Desenvolver a capacidade crítica e reflexiva do aluno, e seu grau de domínio e operacionalização de conceitos científicos através do exercício linguístico da argumentação.
- 2.Desenvolver no aluno a capacidade de identificar e debater questões pertinentes aos grandes temas sociológicos da atualidade, na medida em que percebe sua importância para o presente e futuro dos processos e experiências sociais vivenciados em sua realidade mais próxima.

EMENTA

História da sociologia. Revolução industrial e a formação da sociedade capitalista. Objeto de estudo da sociologia na realidade. Elementos essenciais do estudo da sociologia: cultura, sociedade de massa, sociedade de consumo, coerção social e controle social. Estratificação social. A vida econômica e a sociedade. As instituições sociais e os mecanismos de controle social. Sistema de poder. Sociedade do trabalho e as novas perspectivas de qualificação do homem. Ética no Trabalho.

REFERÊNCIAS BÁSICAS

COSTA, M.C.C. Sociologia: Introdução à ciência da sociedade. São Paulo: Moderna, 1987

CHARON, J. Sociologia. São Paulo: Ed. Saraiva, 2002.

MARTINS, C.B. O que é Sociologia (Coleção Primeiros Passos). São Paulo: Brasiliense, 1982.

REFERÊNCIAS COMPLEMENTARES

AMOEDO, S. Ética do trabalho: Na era da Pós-qualidade. Editora Quality. 2007.

GALLIANO, A. G. Introdução à Sociologia. São Paulo: Harper & Row do Brasil, 1981.

GONÇALVES, M. H. B. Ética e Trabalho. Editora SENAC. 2007.

SOUZA, M. C. G. Ética no Ambiente de Trabalho: Uma Abordage Franca Sobre a conduta ética dos colaboradores. Editora Campus. 2009.

7º PERÍODO

Disciplina	Análise Sens	orial de Aliment	os				
SIGLA	FGE065	CRÉDITOS	3.2.1	СН	60	PR	-

OBJETIVOS

Treinar o aluno através de conhecimentos sobre os fundamentos da análise sensorial, capacitando-o para estruturar um laboratório de análise sensorial, selecionar e treinar equipe de provadores, aplicar e selecionar testes sensoriais com vistas a resolver problemas específicos na indústria ou na pesquisa.

EMENTA

Os órgãos dos sentidos e a percepção sensorial; Limites mínimos de sensibilidade; Amostra e seu preparo; Laboratório e equipamentos; Métodos sensoriais; Questionários; Correlação entre análise sensorial e análise reológica dos alimentos; Delineamentos estatísticos e experimentais; Estudos de aceitação pelo consumidor; Seleção de equipe de provadores.

REFERÊNCIAS BÁSICAS

CHAVES, J.B.P. Métodos de Diferença em Avaliação Sensorial de Alimentos e Bebidas. Viçosa. UFV, 1998.

FARIA, E. Técnicas de Análise Sensorial. Campinas. ITAL/LAFISE, 2002.

MORAES, M.A.C. *Métodos para Avaliação Sensorial dos Alimentos*. Campinas. Ed da UNICAMP, 1988.

REFERÊNCIAS COMPLEMENTARES

ALMEIDA, T.C. A. Avanços em Análise Sensorial. Editora Varela. 1999.

DUTCOSKY, S. D. Análise Sensorial de alimentos. Editora Champagnat. ISBN (9788572921688).

CHAVES, J.B.P. Práticas de Laboratório de Análise de Alimentos. Viçosa. UFV, 1998.

MINIM, V. P. R. Análise Sensorial estudos com consumidores. Editora UFV.

MONTEIRO, C. Técnicas de Avaliação Sensorial. Curitiba, 1984.

Disciplina	Processar	Processamento de Frutas e Hortaliças								
SIGLA	FGE067	CRÉDITOS	3.2.1	СН	60	PR	FGE053/FGF033			
OBJETIVOS										

Proporcionar aos alunos conhecimentos a respeito da tecnologia de frutas e hortaliças: matériaprima, métodos de conservação, tecnologias de elaboração de produtos, alterações e processamento.

EMENTA

Processamento para conservas de frutas e hortaliças. Processamento de frutas cristalizadas. Desidratação de frutas e hortaliças. Congelamento de frutas e hortaliças. Produção de geléias e doces em pastas. Processamento de balas e chocolate.

REFERÊNCIAS BÁSICAS

HOLDSWORTH, S.D. Conservacion de Frutas e Hortalizas. Editorial Acribia 1988.

ITAL Manual Técnico no 4 Processamento de Hortaliças. Campinas 1994.

SOUTHGATE. D Conservación de frutas y hortalizas. Editorial Acribia 1992.

REFERÊNCIAS COMPLEMENTARES

FIDLER, J.C. y MANN, G. Refrigeración de manzanas y peras. Editorial Acribia, 1984.

GROSSO, A. L. Técnica de elaboracion moderna de confituras. 2ª edición,Refinerías de maiz, Tucumán 117, Buenos Aires, Argentina, 1972, 252p.

ITAL Manual Técnico no 8 Industrialização de frutas. Campinas 1991.

JACKIX, M.H. Doces, Geléias e Frutas em calda. Ícone Editora 1988.

MEINERS, A.; KREITEN, K.; JOKIE, H. Silesia Confiserie Manual n°3. 1ª edição, KDruck, Viersen, Alemanha, 1985, 888p.

PANCOAST, M. H. & JUNK, W. R. Handbook of sugar, 2° edition, Avi Publishing Company, Inc. Westport, Connecticut.

WILLS, R.H.H.; LEE, T.H.; McGLASSON, W.B.; HALL, E.G.; GRAHAM, D.

Fisiologia y Manipulacion de frutas y hortalizas post-recolección. Editorial Acribia, 1984.

Disciplina	Materiais e	Embalagens pa	ra Alimen	itos			
SIGLA	FGE072	CRÉDITOS	3.2.1	СН	60	PR	-
OBJETIVOS	1	ı		1	ı	1	1

Fornecer ao aluno conhecimentos sobre transporte e movimentação, produção de embalagens para a Indústria Alimentícia, utilização de embalagens na Indústria Alimentícia, sistemas de

envasamento, critérios para a seleção de embalagens, desenvolvimento de novas embalagens, legislação brasileira e internacional, além de um estudo sobre as ciências dos materiais.

EMENTA

Definições, finalidades e características de embalagens de alimentos. Tipos, composição, propriedades, processo de fabricação e aplicação de embalagens metálicas, de vidro, plásticas, celulósicas e laminados. Interação embalagem x alimento. Rotulagem. Controle de qualidade e legislação. Design de embalagens.

REFERÊNCIAS BÁSICAS

COUTINHO, Carlos Bothel. Materiais metálicos para Engenharia. Belo Horizonte: Fundação Christiano Ottoni, 1997.

MOURA, Reinaldo A. e BANZATTO, José Maurício. Manual de Movimentação deMateriais. São Paulo: IMAM, 1990.

OLIVEIRA, Lea Mariza de. Ensaios para a avaliação de embalagens plásticasflexíveis. Campinas: Centro de Tecnologia de Embalagens, 1996.

REFERÊNCIAS COMPLEMENTARES

BUREAU, G. Embalaje de los alimentos de gran consumo. Zaragoza: Acribia, 1995.

HEISS, R. Princípios de Envasa de los alimentos: guia internacional. Zaragoza:Editorial Acribia, 1970.

RICHTER, Ernesto et alii. Tecnologia de Acondicionamento e Embalagem deTransporte. São Paulo: IPT, 1982.

SOUZA, J. P. Aumente o tempo de conservação dos alimentos e obtenha maiores lucros. Editora Impresa livre. 2011.

EVANGELISTA, J. Tecnologia de alimentos. Editora atheneu. 2001.

Disciplina	Normalizaç	ão e Sistemas c	le Gestão Ir	ndustrial			
SIGLA	FGE075	CRÉDITOS	3.2.1	СН	60	PR	-

OBJETIVOS

Conhecer e discutir de forma reflexiva e analítica os conceitos, objetivos e princípios da normalização e seus impactos. Compreender a importância de sistemas de gestão para as indústrias de Alimentos, as razões e benefícios da integração dos sistemas e da certificação.

EMENTA

Conceitos, objetivos e princípios da normalização e seus impactos. Fundamentos dos sistemas de gestão. Motivadores e benefícios da normalização de sistemas de gestão. Sistema de gestão da qualidade conforme a ISO 9001. Sistema de gestão de segurança de alimentos conforme a ISO 22000. O sistema de gestão ambiental conforme a ISO 14001. Responsabilidade social conforme a Norma ISO 26000. Sistemas de gestão integrados. Razões e benefícios da integração. Elementos comuns aos sistemas de gestão. O papel das auditorias nos sistemas de gestão. Conceitos e princípios relacionados com auditorias. Metodologia para gerenciamento e realização das auditorias conforme a NBR ISO 19011. Orientações para realizar auditorias conforme a SA 8000. Certificação de sistemas de gestão.

REFERÊNCIAS BÁSICAS

BATALHA, Mário Otávio (Coordenador). Gestão Agro-industrial. São Paulo, Atlas, 2001.

ROSSETI, José Paschoal. Introdução à Economia. São Paulo, Atlas, 1985.

ZYLBERSZTAJN, D. e NEVES, M. (Orgs.) Economia e Gestão dos Negócios Agroalimentares. São Paulo: Pioneira, 2000.

REFERÊNCIAS COMPLEMENTARES

CHIAVENATO, *administração: teoria, processo e prática*,editora makron books.

ISO/TC 34 (2008) ISO 22000 Standard Procedures for Food Safety Management Systems, Bizmanualz (Ed.), 392 pp (ISBN 978-1931591430).

MENDES, Judas Tadeu Grassi. Economia Agrícola. Curitiba, ZNT, 1998

MOREIRA, DANIEL A. **Administração da produção e operações**, editora pioneira.

Disciplina	Laboratório d	le Fenômenos d	e Transpor	tes			
SIGLA	FGE082	CRÉDITOS	2.0.2	СН	60	PR	-

OBJETIVOS

Realização de experimentos para a aplicação e verificação de conceitos estudados nas disciplinas Fenômenos de Transportes I, II, III., operações unitárias e modelagem.

EMENTA

Atividades práticas relacionadas ao conteúdo programado das disciplinas Fenômenos de Transportes I, II, III.

REFERÊNCIAS BÁSICAS

BENNETE. Fenômenos de Transporte. 5. ed. Rio de Janeiro: LTC, 1996.

CREMASCO, M. A., Fundamentos de Transferência de Massa, 1ª ed., Editora da UNICAMP, 1998.

INCROPERA, F. P.; DEWITT, D. P., Fundamentos de Transferência de Calor e Massa, 3ª ed., Guanabara Dois, 1992.

REFERÊNCIASCOMPLEMENTARES

BIRD, R. B.; STEWART, W. E., LIGHTFOOT, E. N., Transport Phenomena, John Wiley & Sons, Inc., 1960.

GEANKOPLIS, C. J., Transport Processes and Unit Operations, 3rd ed.,

Prentice-Hall International, Inc., 1993.

GEANKOPLIS, C. J., Transport Processes and Unit Operations, 3rd ed., Prentice-Hall International, Inc., 1993.

SHERWOOD, T. K., PIGFORD, R. L.; WILKE, C. R., Mass Transfer, McGraw-Hill Book Co.,1985.

Disciplina	Operações	s Unitárias III					
SIGLA	FGE104	CRÉDITOS	3.2.1	СН	60	PR	FGE078

OBJETIVOS

Identificar as diferentes Operações Unitárias que envolvem princípios de transferência de calor, suas particularidades e características próprias, e aplicar os procedimentos de cálculo relacionados ao seu dimensionamento e/ou com a análise de situações operacionais.

EMENTA

Equipamentos para troca térmica. Combustão. Geração de vapor. Evaporação. Cristalização. Psicrométrica. Secagem. Refrigeração. Torres de resfriamento.

REFERÊNCIAS BIBLIOGRÁFICAS

FOUST, Alan S. Princípios das operações unitárias. 2 ed. Rio de Janeiro: Livros Técnicos e Científicos, 1982.

GOMIDE, R. Operações Unitárias. Edição do Autor, 1º e 3º vol., 1980.

KERN, Donald Q. Processos de Transmissão de Calor. Editora Guanabara Dois, 1982.

REFERÊNCIAS COMPLEMENTARES

COULSON, J. M. Tecnologia química: operações unitárias. 2 ed. Lisboa: Fundação Calouste

Gulbenkian, 1968.

FOUST, WENZEL, CLUMP, MAUS, ANDERSEN. Princípios das Operações Unitárias. Editora Guanabara Dois S.A., 1982.

GOMIDE, Reynaldo. Manual de Operações Unitárias. Volumes I, II, III e IV. São Paulo: R. Gomide, 1979.

GEANKOPLIS, C. J., Transport Processes and Unit Operations, 3rd ed., Prentice-Hall International, Inc., 1993.

GEANKOPLIS, C. J., Transport Processes and Unit Operations, 3rd ed., Prentice-Hall International, Inc., 1993.

PERRY E CHILTON. Manual de Engenharia Química. 5.ed. Ed. Guanabara Dois S.A.,1980.

MACINTYRE, Archibald Joseph. Ventilação Industrial e Controle da Poluição.Editora Guanabara Koogan S.A., 1990.

MASSARANI, G. Filtração. Rio de Janeiro: Publicação didática, COPPE/UFRJ, 1978.

MASSARANI, G. Problemas em Sistemas Particulados. Editora Edgard Blucher Ltda, 1984.

MASSARANI, G. Fluidodinâmica em Sistemas Particulados. Rio de Janeiro: Editora UFRJ, 1997.

POMBEIRO, Armando J. Lataurrette O. Técnicas e operações unitárias em química laboratorial. Lisboa: Fundação Calouste Gulbenkian, 1980.

8º PERÍODO

SIGLA FGE074 CRÉDITOS 3.2.1 CH 60 PR FGE053/FGF0	Disciplina	Processan	nento de Leite e	e derivado	S			
	SIGLA	FGE074	CRÉDITOS	3.2.1	СН	60	PR	FGE053/FGF033

OBJETIVOS

Proporcionar aos alunos conhecimentos a respeito da matéria-prima leite, métodos de conservação, tecnologias de elaboração de produtos, alterações e processamento.

EMENTA

Estudo da obtenção higiênica, transporte, composição química, processos de conservação, tecnologias de elaboração de produtos, controle de qualidade e alterações do leite e seus derivados.

REFERÊNCIAS BÁSICAS

MADRID, A.; CENZANO, I.; VICENTE, J. M. Manual de indústria dos alimentos. Livraria Varela, 1996.

SPREER, E. Lactología Industrial. Zaragoza: Editorial Acribia, 1991.

VEISSEYRE, R. Lactología técnica. Zaragoza: Editorial Acribia, 1988.

REFERÊNCIAS COMPLEMENTARES

ITAL Manual Técnico no 8 Industrialização de frutas. Campinas 1991.

LUQUET, F. M. Leche y productos lácteos. Zaragoza: Editorial Acribia.

WILLS, R.H.H.; LEE, T.H.; McGLASSON, W.B.; HALL, E.G.; GRAHAM, D. Fisiologia y Manipulacion de frutas y hortalizas post-recolección. Editorial Acribia, 1984.

SOUTHGATE. D Conservación de frutas y hortalizas. Editorial Acribia 1992

VARNAM, A. H. Milk and Milk products, technology, chemistry and microbiology. Chapman & Hall, 1994.

Disciplina	Instalações	e Instrumentaç	ão Indus	trial			
SIGLA	FGE077	CRÉDITOS	3.2.1	СН	60	PR	-

OBJETIVOS

Dar ao acadêmico uma visão genérica das instalações industriais necessárias e suficientes para a operação de uma indústria e capacitá-lo a definiras instalações mais adequadas.

EMENTA

Apresentação das diversas instalações necessárias para o desenvolvimento de um processo industrial de alimentos: Equipamentos e dimensionamento;

Tubulações, válvulas e acessórios; Setores de apoio; Instrumentação.

REFERÊNCIAS BÁSICAS

FOUST, Wenzel, CLUMP. Maus. ANDERSEN. Princípios das Operações Unitárias. Riode Janeiro: Guanabara Dois SA, 1982.

HIMMELBLAU, M. David, Engenharia Química: Princípios e Cálculos. Traduzido por Jossyl de Suza Peixoto. Rio de Janeiro: Principe. – Hall do Brasil, 1984.

KERN, Donald Q. Processos de Transmissão de Calor. Rio de Janeiro: GuanabaraDois, 1982.

REFERÊNCIAS COMPLEMENTARES

BENETT, C. O. Fenômeno dos Transportes. São Paulo: MCGraw Hill, 1978.

BRASIL, Ministério da Agricultura. Regulamento da Agricultura. Regulamento da inspeção industrial e sanitária de produtos de origem animal, Brasília, 1980.

GOMIDE. Reynaldo. Estequiometria Industrial. São Paulo: R. Gomide,1979.

MENDES, J. T.G.; PADILHA Jr., J. Agronegócio: uma abordagem econômica. Prentice Hall Brasil, 2007.

SCARE, R. F.; ZYLBERSZTAJN, D.; (Orgs.) Gestão da qualidade no agribusiness: estudos e casos. São Paulo: Editora Atlas, 2003.

Disciplina	Processai	mento de Carne	e derivado	os			
SIGLA	FGE079	CRÉDITOS	3.2.1	СН	60	PR	FGE053/FGF033

OBJETIVOS

Proporcionar aos alunos conhecimentos a respeito da matéria-prima carne, métodos de conservação, tecnologias de elaboração de produtos, alterações e processamento.

EMENTA

Estudo da obtenção higiênica, transporte, composição química, processos de conservação, tecnologias de elaboração de produtos, controle de qualidade e alterações da carne e seus derivados.

REFERÊNCIAS BÁSICAS

GIRARD, J. P. Tecnologia de la carne y de los productos carnicos. Zaragoza:Editorial Acribia, 1996.

PRANDL, OSKAR. Tecnologia e Higiene de la Carne. 1 ed. Zaragoza: Editorial Acribia, 1994.

SCHIFFNER, Eberhard. Elaboracion casera de carne y embutidos. Zaragoza: Acribia, 1 ed. 1996.

BIBLIOGRAFIA COMPLEMENTAR

LAWRIE, R. A. Ciência de la carne. 2 ed. Zaragoza: Editorial Acribia, 1974.

PRICE, James F. Ciência de la carnbe y de los productos carnicos. 2 ed. Zaragoza:Editorial Acribia, 1994.

REVISTA NACIONAL DA CARNE. Publicação mensal. Brasil.

REVISTA CARNETEC. Publicação bimensal, Estados Unidos.

VARNAM, A. H. Meat and meat products technology, chemistry and microbiology. Chapman & Hall, London, 1 ed. 1995.

Disciplina	Engenhari	a Bioquímica					
SIGLA	FGE080	CRÉDITOS	3.2.1	СН	60	PR	FGF033

OBJETIVOS

Fornecer ao aluno uma visão geral sobre a relevância da Engenharia Bioquímica e dos Processos Biotecnológicos na indústria de alimentos e conhecimentos específicos acerca dos conteúdos abordados no decorrer da disciplina.

EMENTA

Engenharia bioquímica. Cinética enzimática. Reatores ideais e reatores reais. Estequiometria e Cinética microbiana. Biorreatores. Tecnologia de biorreatores. Reatores com células e enzimas imobilizadas.

REFERÊNCIAS BÁSICAS

ALMEIDA LIMA, U., AQUARONE, E., BORZANI, W. e SCHMIDELL, W. (Coordenadores).Biotecnologia Industrial, volume 2. Editora Edgar Blücher, 2001.

BOBBIO, P.ª BOBBIO, F. Química do Processamento de Alimentos. 2. Ed.São Paulo: Varela,1992.

SCRIBAN, René (Coordenador). Biotecnologia. Editora Manole. 1985.

REFERÊNCIAS COMPLEMENTARES

BAILEY, J. E.; OLLIS, D. F. Biochemical Engineering Fundamentals. Tokyo. McGraw-Hill Kogakusha Ltd. 2nd edition. 1986.

BOBBIO, F. O. BOBBIO, P.A. Introdução à Química de Alimentos. Livraria Varela, São Paulo,1989.

CRUEGER, W. and CRUEGER, A., Biotechnology: A Textbook of IndustrialMicrobiology, 2nd edition, 1990.

LEHNINGER, Albert L. NELSON, David L. COX, Michael M. Princípios da Bioquímica. Ed. Savier.

WISEMAN, A. (editor), Handbook of Enzyme Biotechnology, Ellis Horwood limited, England, 1985.

Disciplina	Empreende	Empreendedorismo e Marketing no Agronegócio								
SIGLA	FGF042									
OBJETIVOS										

Mostrar ao aluno os principais conceitos e ideias das ferramentas "marketing" e "empreendedorismo" no contexto das indústrias de alimentos.

EMENTA

Conceitos básicos de marketing. Tarefas de marketing. Ambientes de marketing. Subsistemas de marketing. Administração de marketing no setor industrial. Administração de marketing no setor de varejo. Marketing de serviços profissionais. Marketing de incentivos. Definição de valor e satisfação para o cliente. A globalização dos mercados e as práticas de marketing. SIM sistema de informações de informações de marketing. Auditoria e avaliação da eficácia de marketing.

REFERÊNCIAS BÁSICAS

DOLABELA, Fernando. Oficina do Empreendedor. São Paulo: Editora de Cultura, 1999.

FILION, Louis Jacques. Empreendedorismo e Gerenciamento: Processos Distintos, Porém Complementares. *RAE light*, v. 7, n. 3, pp. 2-7, 2000.

JACINTO, Nágila Melissa Ferreira; Vieira, Adriane. O Desenvolvimento De Competências Para Inovação Tecnológica e Organizacional. In: *Anais do XXII Enanpad*, 2008.

REFERÊNCIAS COMPLEMENTARES

BRESSER PEREIRA, Luis Carlos. Desenvolvimento Econômico e o Empresário. *Revista de Administração de Empresas*, v. 32, n. 3, pp. 6-12, 1992. (anexado)

BAKER, Michael. Administração de Marketing. Rio de Janeiro: Elsevier, 2005.

CHANLAT, Jean François. Quais Carreiras e Para Qual Sociedade? *Revista de Administração de Empresas*, v. 35, n. 6, pp. 67-75, 1995. (anexado)

COSTA, Maira. O Bonito é Ser Pequeno? Revista Exame, 28 de julho de 1999

DOLABELA, Fernando. O Segredo de Luísa. São Paulo: Cultura, 1999.

GIMENEZ, Fernando Antonio Prado; FERREIRA, Jane Mendes; RAMOS, Simone Cristina. Configuração Empreendedora ou Configurações Empreendedoras? Indo um Pouco Além de Mintzberg. In: *Anais do XXXII Enanpad*, 2008. (anexado)

HITT, Michael A.; IRELAND, R. Duane; HOSKISSON, Robert E. Administração Estratégica. São Paulo: Cengage Learning, 2008. Caps. 1, 2, 3, 4 e 13.

KOTLER, Philip; ARMSTRONG, Gary. *Princípios de Marketing*. 7^a ed. Rio de Janeiro: LTC, 1999. Caps. 1, 2, 3 e 8.

9º PERÍODO

Disciplina	Instrumentação e Controle de Processos								
SIGLA	FGE083	CRÉDITOS	3.2.1	СН	60	PR	FGE077		

OBJETIVOS

Dar ao aluno uma visão genérica dos diversos instrumentos utilizados para o controle de processos industriais. Fornecer ferramentas de projeto, análise e sintonia de sistemas de controle de processos.

EMENTA

Instrumentação: sensores e atuadores. Dinâmica de processos. Função de transferência. Estratégias de controle. Ação de controladores. Sintonia de controladores.

REFERÊNCIAS BÁSICAS

COUGHANOWR, Donald R. e KOPPEL, Lowell P. Análise e Controle de Processos.São Paulo: Editora Guanabara Dois, 1978.

DELMÉE, G. J. Instrumentação Industrial. Editora interciência. 2011.

JOHNSON, C.D., Controle de Processos: tecnololgia da instrumentação, Fundacao Calouste Gulbenkian, 1990.

REFERÊNCIAS COMPLEMENTARES

LUYBEN, M. L. e LUYBEN, W. L., Essentials of Process Control, McGraw-Hill company,1997.

MARLIN, T. E., Process Control: Designing Processes and Control Systems for Dynamic Performance. Editora McGraw-Hill, 2a edição, 2000.

MCFARLANE, I., Automatic Control of Food Manufacturing Process, Kluwer Academic, 1995.

SEBORG, D.E., Process Dynamics and Control, John Wiley Professional, 2003.

STEPHANOPOULOS, G., Chemical Process Control: an introduction to theory and practice. PTR Prentice Hall, 1984.

Disciplina	Águas, Re	Águas, Resíduos e Efluentes na Agroindústria							
SIGLA	FGE089	CRÉDITOS	3.2.1	СН	60	PR	FGE048/FGF033		

OBJETIVOS

Apresentar as diversas instalações necessárias ao desenvolvimento de um processo industrial de alimentos e implantação de uma indústria, para que o aluno tenha o conhecimento necessário para desenvolver um projeto de uma indústria.

EMENTA

Os efluentes e a questão ambiental. Classificação; Normas e legislações pertinentes. Caracterização de efluentes. Parâmetros para a caracterização e classificação de efluentes. Aspectos microbiológicos de efluentes. Importância dos processos de tratamento de efluentes na tecnologia ambiental. Processos de Tratamento: Conceituação e operação. Tratamento Preliminar: Gradeamento e Desarenação. Tratamento Primário; Decantação, Floculação, Físico-químico e Biológico. Tratamento Secundário: Lagoas de Estabilização e Facultativas, Aeradas e de maturação. Lodos Ativados. Filtração Biológica Aeróbia, Rotores de contato. Processos Anaeróbios, Digestão Anaeróbia e Aeróbia. Estabilização Alcalina; Desidratação (Centrífugas, Filtros—Prensa e de Esteira). Destinação Final.

REFERÊNCIAS BÁSICAS

Baird, C. Química Ambiental 2ª ed., Editora Bookman, 1999.

Braga, B. et al. Introdução à engenharia ambiental. Prentice Hall,2002.

Mendonça, Sérgio Rolim (1990). Lagoas de Estabilização e Aeradas Mecanicamente: Novos Conceitos. João Pessoa.

REFERÊNCIAS COMPLEMENTARES

Davis, M.L. e Cornwell, D.A. Introduction to Environmental Engineering, 3^a ed., McGraw Hill, 1998.

Novais, Vera Lúcia Duarte de (1993). Química: Físico-Química e Química Ambiental – São Paulo: Atual Editora.

Ramalho, R. S (1991). Tratamento de Águas Residuárias – Barcelona: Editorial Reverté S.A.

Standard Metholds for Examination of Water and Wastewater, American Public Health Association (APHA), 20° ed. Washington, 1998.

Von Sperling, Marcos (1995). Introdução à Qualidade das Águas e ao Tratamento de Esgotos – Belo Horizonte: DESA/CNPq/ABES.Novais, Vera Lúcia Duarte de (1993). Química: Físico-Química e Química.

Disciplina	Processame	nto de Cereais	e Oleagir	nosas					
SIGLA	FGE100	CRÉDITOS	3.2.1	СН	60	PR	FGE053/FGF033		
OBJETIVOS									
importantes necessários p	Dar ao aluno os fundamentos da fabricação de produtos derivados de cereais e oleaginosas mais importantes da alimentação humana, assim como a sua base química e os equipamentos necessários para cada tipo de processamento.								
EMENTA									

Processos para obtenção de farinhas: Operações e equipamentos; Processamento de pães, biscoitos e pastas alimentícias; Processo de fabricação de óleos e gorduras vegetais, refino; Hidrogenação; Margarinas, farelos alimentícios de oleaginosas.

REFERÊNCIAS BÁSICAS

ASSOCIAÇÃO BRASILEIRA DAS INDÚSTRIASDA ALIMENTAÇÃO. Compêndio de Legislação de Alimentos. São Paulo: ABIA, 1996.

ELIAS, M.C. Técnicas para secagem e armazenamento de grãos em média e pequenas escalas. Pelotas: Editora e Gráfica Universitária, 1999.

SEBRAE/PR, Panificadora, Curitiba: SEBRAE/PR, 1995.

REFERÊNCIAS COMPLEMENTARES

LEMOS, Maurício Borges. Formas de organização de culturas de arroz e feijão no Brasil. Brasília: Binagri, 1979.

PRICE, James F. Ciência de la carne y de los productos carnicos. 2 ed. Zaragoza:Editorial Acribia, 1994.

LAWRIE, R. A. Ciência de la carne. 2 ed. Zaragoza: Editorial Acribia, 1974.

VARNAM, A. H. Meat and meat products technology, chemistry and microbiology. Chapman & Hall, London, 1 ed. 1995.

Disciplina	Processamen	to de Pescados	s e deriva	ados			
SIGLA	FGE101	CRÉDITOS	3.2.1	СН	60	PR	FGE053/FGF033

OBJETIVOS

Dar ao aluno os fundamentos da fabricação de produtos derivados de pescados, assim como a sua base química e os equipamentos necessários para cada tipo de processamento.

EMENTA

alimento. Características do Pescado. Estrutura muscular do pescado. Composição química do pescado. Alterações do pescado pós-morte. Noções de microbiologia do pescado. Conservação de produtos pesqueiros. Refrigeração. Avaliação e controle de qualidade do pescado. Métodos de obtenção, seleção e conservação do pescado. Processamento tecnológico do pescado. Produtos salgados, curados e envasados. Subprodutos da indústria do pescado.

REFERÊNCIAS BÁSICAS

ASSOCIAÇÃO BRASILEIRA DASINDÚSTRIASDA ALIMENTAÇÃO. Compêndio de Legislação de Alimentos. São Paulo: ABIA, 1996.

LEMOS, Maurício Borges. Formas de organização de culturas de arroz e feijão no Brasil. Brasília: Binagri, 1979.

ELIAS, M.C. Técnicas para secagem e armazenamento de grãos em média e pequenas escalas. Pelotas: Editora e Gráfica Universitária, 1999.

REFERÊNCIAS COMPLEMENTARES

CAPONT, F.L. Introdução à tecnologia de Pescados Santos: ITAL/OEA, 1971.

GIRARD, J. P. Tecnologia de la carne y de los productos carnicos. Zaragoza: Editorial Acribia, 1996.

GONÇALVES, A.A. Tecnologia do Pescado: Ciência, Tecnologia e Legislação. Ed. Atheneu, São Paulo. 2011. HUSS., H.H. El Pescado fresco: su calidad y cambios de calidad (http://www.fao.org/DOCREP/V7180S/V7180S00.HTM)

MAGALHÃES, E. Adefumação do pescado. Rio de Janeiro, Ministério da Agricultura, 1961.

OGAWA, Masayoshi; MAIA, Everaldo Lima. **Manual de pesca**. Ed. Varela, São Paulo. 1999. Revista Acta Amazonica, publicação bimensal, Brasil.

REVISTA NACIONAL DA CARNE. Publicação mensal. Brasil.

REVISTA CARNETEC. Publicação bimensal, Estados Unidos

ORDÓÑEZ, J.A. **Tecnologia de alimentos: alimentos de origem animal**. Vol 2. Ed. Artmed. 2005.

Disciplina	Planejame	Planejamento e Projetos na Indústria de Alimentos								
SIGLA	FGF041	CRÉDITOS	3.2.1	СН	60	PR	FGF034			

OBJETIVOS

Apresentar as diversas instalações necessárias ao desenvolvimento de um processo industrial de alimentos e implantação de uma indústria, para que o aluno tenha o conhecimento necessário para desenvolver um projeto de uma indústria.

EMENTA

Introdução. Generalidades sobre planejamento industrial e engenharia de produção. Desenvolvimento do projeto. Projeção de mercados. Estudo do processo. Seleção dos materiais e equipamentos para o processo. Estudo do arranjo físico. Localização industrial. Avaliação econômica do projeto. Elaboração de um anteprojeto de uma indústria de alimentos ou correlata cobrindo aspectos tecnológicos, econômicos e sociais.

REFERÊNCIAS BÁSICAS

Administração da Produção e Operações – (658.5 M838a3)

Manual da Administração da Produção - Vol. 1 – (658.5 M136m2v.1)

Manual de Engenharia de Produção – (658.5 M422m2)

REFERÊNCIAS COMPLEMENTARES

Avaliação Social de Projetos - (658 C7766a)

Decisões Financeiras e Análise de Investimentos – (658.1 S713d)

GEANKOPLIS, C. J., TRANSPORT PROCESSES AND UNIT OPERATIONS, 3rd Edition, Prentice –Hall, 1993.

PERRY, R.H.; GREEN, W.D. PERRY'S CHEMICAL ENGINEERS' HANDBOOK, 7th Edition, McGraw-Hill, 1997.

SMITH, R., CHEMICAL PROCESS DESIGN, McGraw-Hill, 1995

Sites e catálogos de Engenharia de processos, companhias químicas, fabricantes de equipamentos, fornecedores, etc.

Disciplina	Consultoria	em Segmentos	de Alimer	ntação			
SIGLA	FGF052	CRÉDITOS	3.2.1	СН	60	PR	-

OBJETIVOS

Prepara o aluno para oferecer às empresas alimentícias acesso fácil às ferramentas de qualidade, sendo os benefícios gerados proporcionais ao custo, além de produzirem alimentos seguros e de qualidade.

EMENTA

Generalidades sobre consultorias. Consultoria para empresas alimentícias. Elaboração do Manual de Boas Práticas de Fabricação. Capacitação de Manipuladores de Alimentos. Implantação de Planos de Limpeza. Elaboração de Documentos Voltados para o Setor de Qualidade. Elaboração de Fichas Técnicas. POP. PPHO. APPCC. Boas Práticas de Fabricação. Boas Práticas Agrícolas. Segurança Alimentar.

REFERÊNCIAS BÁSICAS

CAMARGO, F.L.F. Serviços de Alimentação, Administração e Qualidade. P_lotas, Editora e Gráfica Universitária – Universidade Federal de Pelotas, R.S. 2001. pg. 138.

FERREIRA, S.M.R. Controle da Qualidade em Sistema de Alimentação Coletiva. São Paulo, Livraria Varela, 2002. pg. 171.

MEZOMO, I.F.B. A Administração de Serviços de Alimentação.4 ed. São Paulo, Terra, 1994.

REFERÊNCIAS COMPLEMENTARES

FILHO, A.R.A.S .Manual Básico para Planejamento e Projeto de Restaurantes e Cozinha Industrial.

Livraria Varela, 1996.

HAZELWOOD, D.& MCLEAN, A.C. Manual de Higiene para Manipuladores de Alimentos. São Paulo. Livraria Varela, 1994.

KINTON, RONALD, CESARINI E FOSKETT D. Enciclopédia de Serviços de Alimentação (The Theory of Catering). Trad; Ana Terzi Giova. São Paulo, Editora Varela, 1999

TEICHMANN, I.T.M.Cardápios: técnicas e criatividade. 2. Ed. Caxias do sul: EDUCS, 1990. 232p.:il. (Hotelaria e Turismo).

10º PERÍODO

Disciplina	Trabalho de	e Conclusão de	Curso				
SIGLA	FGE105	CRÉDITOS	6.0.0	СН	90	PR	FGE082

OBJETIVOS

Oportunizar ao acadêmico a iniciação à pesquisa científica tendo com base os conhecimentos construídos durante o curso e complementados com a investigação no decorrer do trabalho; Desenvolver trabalho de pesquisa individual teórico e prático sobre um tema específico da área de Engenharia de Alimentos.

EMENTA

Desenvolvimento de trabalho de pesquisa individual sob orientação de um docente do Curso de Engenharia de Alimentos, constando de desenvolvimento teórico e prático sobre um tema específico da área de Engenharia de Alimentos.

REFERÊNCIAS BÁSICAS

FELLOWS, Peter. Tecnologia del processamento de los alimentos. Zaragoza: Acribia, 1994.

LINDER, Ernest. Toxicologia de los alimentos. 2 ed. Zaragoza: Acribia, 1990.

MAFART, Pierre. Ingenharia industrial Alimentos, processos físicos de conservação.Zaragoza: Acribia, 1994.

REFERÊNCIAS COMPLEMENTARES

BELITZ, J. D. Química de los alimentos. Zaragoza: Editorial Acribia, 1988.

FELLOWS, Peter. Tecnologia del processamento de los alimentos. Zaragoza: Acribia, 1994.

FEMMEMA, Owen R. Química de los alimentos. Zaragoza: Acribia, 1993.

Disciplina	Estágio Curricular Supervisionado							
SIGLA	FGF055	CRÉDITOS	6.0.6	СН	180	PR	FGE082	

OBJETIVOS

O estágio supervisionado visa assegurar o contato do formando com situações, contextos, instituições e empresas alimentícias, permitindo que conhecimentos, habilidades e atitudes se concretizem em ações profissionais, sendo recomendável que suas atividades se distribuam ao longo do curso.

EMENTA

O estágio curricular supervisionado é um conteúdo curricular obrigatório. Ele é um conjunto de atividades de formação, programadas e diretamente supervisionados por membros do corpo docente da instituição formadora e procuram assegurar a consolidação e a articulação das competências estabelecidas.

REFERÊNCIAS BÁSICAS

Consistirá em todos os meios disponíveis junto a biblioteca da UFAM e demais bibliotecas acessíveis, bem como demais fontes existentes junto as indústrias e bancos de dados disponibilizados on-line por órgãos nacionais e internacionais de pesquisa.

BRASIL. Lei nº 11.788, de 25 de setembro de 2008. Dispõe sobre o estágio de estudantes e dá outras providências.

UFAM. Projeto Pedagógico do Curso de Engenharia de Alimentos – 2012.

BRASIL. Resolução nº 218, de 29 de junho de 1973. Discrimina atividades das diferentes modalidades profissionais da Engenharia, Arquitetura e Agronomia.

REFERÊNCIAS COMPLEMENTARES

BRASIL. Lei 11.788, de 25 de setembro de 2008. Ministério do Trabalho e Emprego. Nova Cartilha Esclarecedora sobre a Lei do Estágio.

BRASIL. Resolução - RDC nº 275, de 21 de outubro de 2002. Dispõe sobre o Regulamento Técnico de Procedimentos Operacionais Padronizados aplicados aos Estabelecimentos Produtores/Industrializadores de Alimentos e a Lista de Verificação das Boas Práticas de Fabricação em Estabelecimentos Produtores/Industrializadores de Alimentos.

BRASIL. Resolução - RDC n° 216, de 15 de setembro de 2004. Dispõe sobre o Regulamento Técnico de Boas Práticas para serviços de alimentação.

Disciplinas Optativas

Disciplina	Tecnologia	Tecnologia de Processos Fermentativos							
SIGLA	FGE071	CRÉDITOS	3.2.1	СН	60	PR	FGE080		

OBJETIVOS

Fornecer ao aluno conhecimentos específicos acerca da trecnologia de processos fermentativos e sua aplicação na indústria de alimentos

EMENTA

Tipos de fermentação e fermentadores. Modos de operação de biorreatores. Pré e pós tratamentos: esterilização e assepsia industrial. Recuperação de produtos. Monitoramento de processos: introdução a técnicas de controle e modelagem de processos fermentativos. Aplicações de processos fermentativos na indústria de alimentos: fermentação alcoólica, acética e lática. Processo de fabricação de vegetais fermentados e acidificados. Produção aminoácidos, vitaminas, polissacarídeos e biomassa.

REFERÊNCIAS BÁSICAS

AIBA, S.; HUMPHREY, A. E. & MILLS, M. – Engenharia Bioquímica. Fundação Centro Tropical de Pesquisa e Tecnologia de Alimentos, Campinas, SP, 1971. 334p.

AQUARONE, E.; LIMA, U. DE A. & BORZANI, W. – Alimentos e Bebidas Produzidos por Fermentações. Série Biotecnologia, vol 5. Editora Edgard Blucher, 1983, 227p.

BORZANI, W. Biotecnologia Industrial. Ed. Edgar Blucher, v. 3, 2001.

REFERÊNCIAS COMPLEMENTARES

AQUARONE, E. Alimentos e Bebidas produzidos por fermentação. Editora Blucher. 1983.

BROWN, C. M.; CAMPBELL, I. & PRIEST, F. G. – Introducción a 103a Biotecnologia. Editorial Acribia, S. A., 1989

BORZANI, W.; LIMA, U. De A. & AQUARONE, E. Engenharia Bioquímica. Série Biotecnologia, vol 3. Ed. EdgardBlucher, 1975, 300p.

BU'LOCK, J. & KRISTIANSEN, B. - Biotecnología Básica. Editorial Acribia, S. A., 1991

LIMA, U. De A.; AQUARONE, E. & BORZANI, W. – Tecnologia das Fermentações. Série Biotecnologia, vol. 1.Editora Edgard Blucher, 1975, 285p.SUPLEMENTAR.

Disciplina	Caracterização e Pré-Processamento de Ovos								
SIGLA	FGE091								
OBJETIVOS	BJETIVOS								

Proporcionar aos alunos conhecimentos a respeito das características químicas, físico-químicas e físicas da matéria-prima, métodos de pré-processamento, conservação e alterações.

EMENTA

Importância econômica, sistema de produção, comercialização e transporte, estrutura, fisiologia, propriedades químicas, físicas e físico-químicas de ovos. Possibilidades de aproveitamento industrial de ovos. Operações de pré-processamento de ovos. Controle de qualidade.

REFERÊNCIAS BÁSICAS

BARUFFALDI, R; OLIVEIRA, M. N. Fundamentos de Tecnologia de Alimentos.São Paulo: Atheneu Editora, 1998

EVANGELISTA, J. Tecnologia de alimentos. São Paulo: Atheneu, 2001.

OLIVEIRA, J. S. Queijo Fundamentos Tecnológicos. 1986. Ed. Cone, São Paulo

REFERÊNCIAS COMPLEMENTARES

CECCHI, H. M. Fundamentos teóricos e práticos em análise de alimentos. Editora UNICAMP. 1999.

EVANGELISTA, J. Tecnologia de alimentos. Rio de Janeiro: Atheneu, 1987.

FELLOWS, P. Tecnologia el Procesado de los Alimentos: Princípios e Práticas. Politécnico de Oxiford. London, 1994.

GAVA, A. J. Princípios de tecnologia de alimentos. São Paulo: Nobel, 1984.

Disciplina	Segurança In	Segurança Industrial							
SIGLA	FGE108	CRÉDITOS	3.2.1	СН	60	PR	FGE066		

OBJETIVOS

Conhecer os aspectos de higiene e segurança industrial, bem como a legislação e normas vigentes no âmbito da indústria brasileira

EMENTA

Introdução e Histórico. Organização de Segurança. Riscos Profissionais. Estatísticas de Acidentes. Causas de Acidentes. Doenças Profissionais e Segurança em Laboratório. Conhecimento geral da Legislação e das Normas Regulamentadores de Segurança no Trabalho.

REFERÊNCIAS BÁSICAS

HEMÉRITAS, Adhemar Batista. Organização e normas. 7.ed.. São Paulo: Atlas, 1998.

ENCONTRO DE ENGENHARIA DE SEGURANÇA DO TRABALHO (6.:1998:Rio de

Janeiro). Anais... Rio de Janeiro: Conselho Regional de Administração-RJ. 1998. 50p.

KIRCHNNER, A. Gestão da Qualidade: Segurança do trabalho e Gestão Ambiental. Editora Blucher. 2009.

REFERÊNCIAS COMPLEMENTARES

ATLAS - Manuais de Legislação Atlas. Segurança e medicina do trabalho. 48.ed. São Paulo: Atlas, 2000.

BRASIL – LEIS E DECRETOS. Consolidação das Leis do Trabalho, coordenação Prof.Juarez de Oliveira. 22. ed. São Paulo: Saraiva,1997.

DELA COLETA, José Augusto. Acidentes de trabalho. São Paulo: Atlas, 1989. NORMAS REGULAMENTADORAS. Segurança e medicina do trabalho. 14.ed. São Paulo: Atlas, 1989.

Disciplina	Processos Tecnológicos							
SIGLA	FGE109	CRÉDITOS	3.2.1	СН	60	PR	-	

OBJETIVOS

No âmbito desta disciplina pretende-se dar formação na área da tecnologia e qualidade dos alimentos. Pretende-se fornecer informações sobre princípios fundamentais do tratamento tecnológico dos alimentos e de higiene alimentar, microbiologia dos diferentes produtos alimentares, sobre controle de qualidade e segurança da qualidade (HACCP/autocontrole) e operações unitárias e tratamentos utilizados na produção/conservação dos alimentos.

EMENTA

Processamento térmico de alimentos em autoclaves e sistemas contínuos. Pasteurização e esterilização de vegetais, leite e carnes. Processamento de alimentos extrusados. Processamento de alimentos por métodos não convencionais (microondas, aquecimento ôhmico, alta pressão, irradiação e pulso elétrico). Tecnologia de Barreiras.

REFERÊNCIAS BÁSICAS

EARLY, R. Tecnologia de los productos lácteos. Editorial Acribia. 2003.

FAO Manuals of food quality control. Management of food control programmes. 1999.

WALSTRA, P. Ciencia de la leche y tecnología de los productos lácteos. Editorial Acribia. 2001

REFERÊNCIAS COMPLEMENTARES

EARLE, R. Ingenieria de los alimentos. Editorial Acribia. 1998.

FILHO, R. L. Controle estatístico de qualidade. Livros técnicos e científicos Editora S. A. 1984.

SPREER, E. Lactologia industrial. Ed. Acribia, S.A. 1999.

Disciplina	Projetos Tecnológicos							
SIGLA	FGE109	CRÉDITOS	3.2.1	СН	60	PR	-	

OBJETIVOS

Ambientar o acadêmico na área de gestão de projetos. Capacitar o aluno a: elaborar, escrever e gerenciar um projeto tecnológico; estudar metodologias e ferramentas de gerência de projetos.

EMENTA

Desenvolvimento dos processos de um produto alimentício a partir do conceito inicial, definindose teórica e experimentalmente: formulações, as operações de processamento, embalagens, as características de qualidade e os aspectos legais relacionados ao produto selecionado.

REFERÊNCIAS BÁSICAS

DAVIS, W. S. Análise e projeto de sistemas: uma abordagem estruturada. Rio de Janeiro: LTC, 2001.

PHILLIPS, J. Gerência de Projetos de Tecnologia da Informação. Rio de Janeiro: Campus, 2003.

PRESSMAN, R. S. Engenharia de Software. 5ª ed. São Paulo: McGraw-Hill, 2002.

REFERÊNCIAS COMPLEMENTARES

FIGUEIREDO, F. C.; FIGUEIREDO, H. C. M. Dominando Gerenciamento de Projetos com Ms Project 2003. Rio de Janeiro: Ciência Moderna, 2002.

MAXIMIANO, A. C. A. Administração de projetos: como transformar idéias em resultados. São Paulo: Atlas, 2008.

Pesquisa e desenvolvimento na ciência e na indústria. Editora da UNICAMP. 2.ed. 401p.Campinas, SP, 2002

WU, C. J.; HAMADA, M. Experiments: planning, analysis, and parameter design optimization. John Wiley & Sons, 630p. New York, USA, 2000.

VALERIANO, D. Gerência em Projetos: pesquisa, desenvolvimento e engenharia. São Paulo: Pearson, 1998.

Disciplina	Termobacteriol	logia Aplicada a	Alimento	s						
SIGLA	FGF049	CRÉDITOS 3.2.1 CH 60 PR FGF033								
OBJETIVOS	OBJETIVOS									
	Demonstrar ao aluno os tipos de técnicas e processos de engenharia que podem ser aplicadas em microrganismos de forma a estressá-los e destruí-los.									
EMENTA										
Marcha do FDA para detecção de contaminantes e ensaio de esterilidade comercial. Resistência dos microrganismos ao calor. Modelo de RAHN e ARRHENIUS. Determinação dos parâmetros D, z e Fo requerido. Penetração de calor. Avaliação de processos de esterilização pelo calor. Taxa letal, método geral e matemático em sistemas contínuos e descontínuos. Tempo de resistência para esterilização/pasteurização em processos contínuos. Validação biológica e bioindicadores de esterilização.										
REFERÊNCIAS BÁSICAS										

Disciplina	Gestão de Qualidade							
SIGLA	FGF051	CRÉDITOS	3.2.1	СН	60	PR		

OBJETIVOS

A disciplina Gestão da Qualidade visa proporcionar uma sólida formação e fornecer ao acadêmico uma visão ampla da importância do gerenciamento da qualidade no desenvolvimento de serviços ou de produtos.

EMENTA

Importância. Situação atual. Organização do sistema de controle de qualidade na indústria de alimentos. Medidas objetivas e subjetivas. Planos de amostragem. Mapas de controle. Análise e interpretação dos resultados. Especificações para matéria prima, alimentos processados e embalagens. ISSO 9000, 14000.

REFERÊNCIAS BÁSICAS

ABNT- Associação Brasileira de Normas Técnicas. Normas Série NBR ISO 9000. Rio de Janeiro, 2000.

CERQUEIRA , J. P. de. Sistemas de Gestão Integrados: Conceitos e Aplicações. Rio de Janeiro : Qualitymark Ed.,2006.

FNQ- Fundação Nacional da Qualidade. Critérios de Excelência 2006. São Paulo: FNQ, 2006.

REFERÊNCIAS COMPLEMENTARES

BOUER, G. Qualidade: conceitos e abordagens. Estratégias, planos e implementação São Paulo: Edgard Blücher, 1997.

CARVALHO, M. M. Gestão da qualidade. ISBN (8535217525)

PALADINI, E. P. Gestão de qualidade. Editora atlas. 2004.

MIGUEL, A. C. Gestão da qualidade. Editora atlas. 2010.

Disciplina	Segurança Alimentar e Ambiental							
SIGLA	FGF057	CRÉDITOS	3.2.1	СН	60	PR	-	

OBJETIVOS

Pretende-se que o estudante adquira noções básicas de higiene da produção, para colaborar no cumprimento das regras do bem-estar animal e colaborar na elaboração de sistemas pró-activos de qualidade alimentar, por forma a garantir a saúde pública.

EMENTA

Conceitos de segurança alimentar e de alimentação segura. Panorama de estudos em segurança alimentar. Política de segurança alimentar e meio ambiente. Experiências internacionais e brasileiras. Análises estatísticas do problema de segurança alimentar. Forças de mercado e restrições agro-ambientais. Evolução da consciência ambiental e fracionamento do mercado. Custos ambientais dos sistemas convencionais: avaliação e contabilização. O conceito de agro-ecologia. Tecnologia e custo de produção de sistemas produtivos complexos. Certificação diferenciada como estratégia de ampliação do mercado. Elaboração de relatórios de Impacto Ambiental.

REFERÊNCIAS BÁSICAS

BLACKBURN, C.W. & MCCLURE, P.J. Foodborne Pathogens. Hazards, Risk Analysis and Control, 2002.

LELIEVELD H & MOSTERT T. Hygiene in Food Processing: Principles and Practice. Wooddhead Pub. IncAbington, Cambridge, U.K. 2003.

MORTIMORE, S. & WALLACE, C. HACCP a Practical Approach. Practical, 2005.

REFERÊNCIAS COMPLEMENTARES

Approaches to Food Controland Food Quality Series. The Royal Institute of Public Health and Hygiene, London, U.K. 1997.

BROWN, M. & STRINGER, M. Microbiological Risk Assessment in Food Processing. Woodhead

Publishing Limited, Abington Hall, Cambridge, UK. 2002.

GOULD, W.A. Current Good Manufacturing Practices Food Plant Sanitation (2^a ed.). CTI Publications Inc., Baltimore, U.S.A.1994.

SPRENGER, R.A. Hygiene for Management. Highfield Publications, London. 1993.

VRIES, J. Food Safety and Toxicity. CRC Press, Inc., Boca Raton, Florida, U.S.A. 1997.

Disciplina	Laboratório de Agronegócio						
SIGLA	FGF058	CRÉDITOS	3.2.1	СН	60	PR	-

OBJETIVOS

A disciplina fornecerá informações sobre os principais mecanismos de decisão na gestão do agronegócio.

EMENTA

Jogos simulando processo de decisão e avaliação de resultados na gestão de empresas em diversas situações de concorrência em agronegócio.

REFERÊNCIAS BÁSICAS

BATALHA, Mário Otávio (Coordenador). Gestão Agro-industrial. São Paulo, Atlas, 2001.

MENDES, Judas Tadeu Grassi. Economia Agrícola. Curitiba, ZNT, 1998.

ZYLBERSZTAJN, D. e NEVES, M. (Orgs.) Economia e Gestão dos Negócios Agroalimentares. São Paulo: Pioneira, 2000.

BIBLIOGRAFIA COMPLEMENTAR

BRESSER PEREIRA, Luis Carlos. Desenvolvimento Econômico e o Empresário. *Revista de Administração de Empresas*, v. 32, n. 3, 109P. 6-12, 1992. (anexado)

CHANLAT, Jean François. Quais Carreiras e Para Qual Sociedade? *Revista de Administração de Empresas*, v. 35, n. 6, 109P. 67-75, 1995. (anexado)

COSTA, Maira. O Bonito é Ser Pequeno? Revista Exame, 28 de julho de 1999.

MENDES, Judas Tadeu Grassi. Economia Agrícola. Curitiba, ZNT, 1998.

ROSSETI, José Paschoal. Introdução à Economia. São Paulo, Atlas, 1985.

Disciplina	Desenvolvimento de Novos Produtos

SIGLA	FGF060	CRÉDITOS	3.2.1	СН	60	PR	FGF011

OBJETIVOS

Desenvolver novos produtos empregando os conhecimentos científicos, tecnológicos e de mercado adquiridos no curso. Reconhecer a importância do desenvolvimento de novos produtos. Distinguir os fatores que norteiam seu desenvolvimento. Identificar as etapas de desenvolvimento de um produto novo. Apresentar uma proposta teórica de um produto novo ou de um produto tradicional com uma técnica nova

EMENTA

Definição e caracterização de novos produtos. Interação consumidor/novos produtos. Introdução ao mercado e o caminho do desenvolvimento do novo produto. Caracterização do mercado. Condições a serem atendidas, pelo novo produto. Relação sucesso x Insucesso de um novo produto. Rotulagem e registro.

REFERÊNCIAS BÁSICAS

BOBBIO, P. A.; BOBBIO, F. O. Química do processamento de alimentos. São Paulo: Varela, 1992.

BRAVERMAN, J. B. S. Introduccíon a la bioquímica de los alimentos. Barcelona: Omega, 1967.

CECCHI, H. M. Fundamentos teóricos e práticos em análise de alimentos. Editora UNICAMP. 1999.

REFERÊNCIAS COMPLEMENTARES

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS - ABNT. Coletânea de normas.

CHARLEY, H. Food Science. 2 ed., New York: John Wiley & Sons, 1982

ESKIN, N. M. Biochemistry of foods. 2 ed., New York: Academic Press, 1990.

EVANGELISTA, J. Tecnologia de alimentos. Rio de Janeiro: Atheneu, 1987.

FELLOWS, P. Tecnologia 110el Procesado de los Alimentos: Princípios e Práticas. Politécnico de Oxiford. London, 1994.

Disciplina	Toxicologia de Alimentos						
SIGLA	FGF061	CRÉDITOS	3.2.1	СН	60	PR	FGF033

OBJETIVOS

Construir conceitos básicos relativos aos efeitos nocivos provocados por substâncias químicas no organismo humano tendo, como fonte de exposição os alimentos.

EMENTA

Fundamentos de toxicologia. Delineamento de estudos de toxicidade. Carcinogênese química. Compostos tóxicos naturais de origem vegetal e animal. Aditivos alimentares, pesticidas, metais tóxicos e micotoxinas em alimentos. Contaminantes ambientais e compostos tóxicos formados durante o processamento.

REFERÊNCIAS BÁSICAS

HARDMAN, J G; LIMBIRD, L E. As bases farmacológicas da terapêutica. 10. ed. Rio de Janeiro: Guanabara Koogan, 1999.

MIDIO, A F; MARTINS, D I. Toxicologia de Alimentos. São Paulo: Livraria Varela, 2000.

OGA, S. Fundamentos de toxicologia. São Paulo: Atheneu, 1996.

REFERÊNCIAS COMPLEMENTARES

Approaches to Food Controland Food Quality Series. The Royal Institute of Public Health and Hygiene, London, U.K. 1997.

MIDIDO, A. F. Toxicologia de alimentos. Editora Varela. 2000.

LELIEVELD H & MOSTERT T. Hygiene in Food Processing: Principles and Practice. Wooddhead Pub. IncAbington, Cambridge, U.K. 2003.

LARINI, L. Toxicologia. São Paulo: Manole, 1993.

MORTIMORE, S. & WALLACE, C. HACCP a Practical Approach. Practical, 2005.

Disciplina	Pós-Colheita de Hortaliças e Frutas						
SIGLA	FGP028	CRÉDITOS	3.2.1	СН	60	PR	-

OBJETIVOS

A disciplina fornecerá informações sobre os principais aspectos fisiológicos do desenvolvimento e da pós-colheita de produtos hortifrutícolas, além de capacitação técnico-científica relacionada à colheita, manuseio, tratamento, padronização, classificação, embalagem, processamento mínimo, conservação e transporte de hortaliças e frutas, tornando o aluno capaz de difundir tecnologias de pós-colheita aos produtores rurais.

EMENTA

Importância dos estudos na área de pós-colheita. Aspectos fisiiológicos do desenvolvimento de orgãos de plantas com interresse na pós-colheita. Perdas pós-colheita. Fatores pré-colheita e colheita. Manuseio, tratamento, acondicionamento e transporte de produtos hortifrutícolas. Aramazenamento refrigerado. Armazenamento em atmosfera controlada e modificada. Maturação controlada de frutas. Qualidade pós-colheita. Processamento mínimo de hortaliças e frutas.

REFERÊNCIAS BÁSICAS

CHITARRA, M. I. F.; CHITARRA, A. B. Pós-colheita de frutas e hortaliças: fisiologia e manuseio. E. Ed. Lavras:UFLA, 2005. 785p.

CHITARRA, M. I. F.; CHITARRA, A. B. Pós-colheita de frutas e hortaliças: glossário. 2. Ed. Lavras: UFLA, 2006. 256p.

KLUGE, R. A.; NACHTIGAL, J. C.; FACHINELLO, J. C.; BILHALVA, A. B. Fisiologia e manejo póscolheita de frutas de clima temperado. Pelotas: UFPEL, 1997. 163p.

REFERÊNCIA COMPLEMENTARES

AWAD, M. Fisiologia pós-colheita de frutos. São Paulo: Nobel, 1993. 114p.

Cruess, W. V. Produtos Industriais de Frutas e Hortaliças. 1973. Ed. Edgard Blucher Ltda. Vol. 1 e Vol. 2.

Fellows, P.J. Tecnologia do Processamento de Alimentos: Princípios e Prática. 2006. Ed. Artmed, Porto Alegre.

Koblitz, M.G.B. Matérias-primas Alimentícias: Composição e Controle de Qualidade. 2011. Ed. Guanabara Koogan, Rio de Janeiro.

Ordonez, J.A. Tecnologia de Alimentos: Componentes dos alimentos e processos. Vol.1. 2005. Ed. Atmed, Porto Alegre.

Disciplina	Estatística						
SIGLA	IEE353	CRÉDITOS	4.4.0	СН	60	PR	IEM012

OBJETIVOS

Ao final do curso o aluno deverásaber escolher adequadamente os métodos de amostragem de acordo com cada caso; ser capaz utilizar os principais métodos estatísticos, para confirmar dados numéricos de experimentos.

EMENTA

Noções de Amostragem. Apresentação tabular e gráfica dos dados. Medidas de posição e de variabilidade para uma amostra. Correlação e regressão. Noções de probabilidade. Distribução binomial. Distribuição normal. Intervalo de confiança. Teste de hipótese

REFERÊNCIAS BÁSICAS

ANDERSON et al. Estatística Aplicada à Administração e Economia. 2a ed. São Paulo. 2007.

MAGALHÃES, M. N. Noções de Probabilidade e Estatística. 7a ed. São Paulo. 2009.

VIEIRA, S., Introdução à Bioestatística. Rio de Jeneiro: Campus, 1989.

REFERÊNCIAS COMPLEMENTARES

CRESPO, A. A. Estatística Fácil. 19a ed. São Paulo: Saraiva. 2009.

FONSECA, Jairo Simon da & MARTINS, Gilberto de Andrade, Curso de Estatística, 3ª edição – São Paulo: Atlas, 1982.

MORETTIN, Pedro Alberto. Introdução à Estatística para as Ciências Exatas. São Paulo. Atual, 1981.

MILONE, Giuseppe. (2003) Estatística Geral e Aplicada. 1a ed. São Paulo: Cengage Learning.

MORETTIN, P. A Estatística Básica. 6a ed. São Paulo: Saraiva.2010.

Disciplina	Lingua Brasileira de sinais B						
SIGLA	IHP123	CRÉDITOS	4	СН	60	PR	-

OBJETIVOS

Compreender aspectos básicos da língua de sinais brasileira.

EMENTA

A língua de sinais brasileira. A constituição linguística do sujeito surdo. Noções básicas de fonologia e morfologia das libras. Noções básicas de morfossintaxe. Noções básicas de variação.

REFERÊNCIAS BÁSICAS

CASTRO JUNIOR, Gláucio de. Variação Linguística em Língua de Sinais Brasileira: foco no léxico. Dissertação de Mestrado, Brasília: UnB, 2011.

FELIPE, Tânia A. Libras em Contexto. Brasília: MEC/SEESP, 7ª edição, 2007.

MINISTÉRIO DA EDUCAÇÃO. Decreto nº 5.626 de 22 de dezembro de 2005. Brasília: MEC, 2005.

REFERÊNCIAS COMPLEMENTARES

BRITO, Lucinda Ferreira. Por uma Gramática de Línguas de Sinais. Rio de Janeiro: Tempo Brasileiro, 1995.

COUTINHO, Denise. LIBRAS e Língua Portuguesa: semelhanças e diferenças. João Pessoa:

Arpoador, 2000

MINISTÉRIO DA EDUCAÇÃO/Secretaria de Educação Especial. Língua Brasileira de Sinais. Brasília: MEC/SEESP. 1998.

QUADROS, Ronice Muller; KARNOPP, Lodenir. Língua de Sinais Brasileira: estudos lingüísticos. Porto Alegre: Artmed, 2004.

SACKS, Oliver W. Vendo Vozes: uma viagem ao mundo dos surdos. São Paulo: Companhia das Letras, 1998.

SKLIAR, Carlos. A Surdez: um olhar sobre as diferenças, Porto Alegre: Mediação, 1998.

STRNADOVÁ, Vera. Como é Ser Surdo. Petrópolis, RJ: Babel Editora, 2000.

Disciplina	Português	Instrumental					
SIGLA	IHP164	CRÉDITOS	4	СН	60	PR	-

OBJETIVOS

- Oferecer subsídios de Língua Portuguesa aos estudantes, afim de que possam pensar, falar e escrever com mais clareza, concisão, coerência e ênfase;
- Auxiliar os estudantes no sentido de saberem usar a língua para estruturar melhor seus pensamentos, nas falas e suas escritas, enfim na comunicação.

EMENTA

Aprimoramento da leitura compreensiva, interpretativa e crítica de textos persuasivos, informativos e técnicos, tendo em vista a produção dessa tipologia textual em conformidade com a gramática de uso.

REFERÊNCIAS BÁSICAS

AQUINO, Dilma Pires de. & Outros. A Motivação e as Condições de Produção deTextos. São Paulo: Editora da PUC, 1986.

FIORIN, José Luiz & SAVIOLI, Francisco Platão. Para entender o texto: Leitura eRedação. São Paulo: Ática, 1990.

INFANTE, Ulisses. Curso de Gramática Aplicada aos Textos. 2 ed. São Paulo: Scipione, 1995.

REFERÊNCIAS COMPLEMENTARES

CITELLI, Adilson. Linguagem e Persuasão. São Paulo: Ática, 1985.

GARCIA, Othon M. Comunicação em Prosa Moderna. 6 ed. Rio de Janeiro:

Fundação Getúlio Vargas, 1977.

INFANTE, Ulisses. Do Texto ao Texto: Curso Prático de Leitura e Redação. São Paulo: Scipione

Ltda, 1991.

KASPARI, Adalberto José. Redação Oficial: normas e modelos. 10 ed. Porto Alegre:PRODIL, 1996

MEDEIROS, J. B. Português Instrumental – Contém Técnicas de Elaboração de Trabalho de Conclusão de Curso. Editora Altas, edição 9. 2010.

1.4. CONCEPÇÃO METODOLÓGICA

As disciplinas que compõem a matriz curricular do curso de Engenharia de Alimentos da UNIVERSIDADE FEDERAL DO AMAZONAS serão ministradas compreendendo procedimentos teórico-práticos necessários para o processo aprendizagem. O Currículo do Curso de Engenharia de Alimentos da UFAM nasceu a partir dos princípios da interdisciplinaridade e multidisciplinaridade, objetivando formar um profissional eclético conhecedor das técnicas e engajado com os problemas sociais a serem resolvidos mediante a aplicação dos seus conhecimentos acadêmicos em situações da prática profissional.

Na concepção do Currículo de Engenharia de Alimentos da UFAM refletiu-se sobre o contexto sócio-político em que o profissional formado atuará. O modelo de profissional que se pretende formar estabelecido nos objetivos, nos conteúdos curriculares e nas diversas atividades curriculares também está atrelado à dimensão do contexto social e político.

Nesta concepção curricular procura-se englobar os conhecimentos científicos das diversas áreas numa relação interdisciplinar para reforçar o tripé de sustentação da Universidade: ensino, pesquisa e extensão. De certa forma, isto faz parte das práticas pedagógicas do curso. As práticas pedagógicas e os métodos de ensino utilizados em cada disciplina ou atividade do curso devem ser estabelecidos no respectivo plano de ensino, sendo definidos pelo professor responsável e deverão ser aprovadas previamente.

Basicamente a metodologia adotada nas diversas disciplinas consistirá em ensino de teorias e práticas. Sendo que as teorias serão normalmente ministradas por meio de aulas expositivas e as práticas por meio de desenvolvimento de atividades nos laboratórios. Os conteúdos das disciplinas são ainda complementados por visitas técnicas às Indústrias bem como a Órgãos ou Empresas Públicas ou Privadas envolvidas com o setor alimentício.

Os docentes poderão ainda exigir aos alunos trabalhos escolares extra classe também com o intuito de complementar os conteúdos teóricos e práticos das disciplinas. Para tal o aluno poderá usar as dependências das bibliotecas localizadas no setor norte e sul do Campus Universitário, bem como os diversos laboratórios e setores de atividades de campo.

Além disso, outras formas de aprendizagem serão desenvolvidas como:

1.4.1 Cursos e Projetos de Extensão

Os cursos e os projetos de extensão executados pela Faculdade de Ciências Agrárias podem ser na sede, ou fora dela; para os acadêmicos, assim como para profissionais e outros interessados; variando a duração, a frequência de oferta e o público alvo, conforme o assunto abordado. Os programas de extensão visam disponibilizar recursos humanos que contribuam para a melhor execução das atividades de Extensão Universitária. O Programa é administrado pela Pró-Reitoria de Extensão da UFAM.

O aluno do curso de Engenharia de Alimentos também terá a oportunidade de participar dos programas de intercâmbios internacionais como o Programa Ciência sem fronteiras e o Programa BAFAGRI.

1.4.2 Programa Especial de Treinamento – PET

O PET tem como objetivo propiciar aos alunos de graduação, sob a orientação de um professor-tutor, condições para o desenvolvimento de atividades extracurriculares, que favoreçam a sua integração no mercado profissional, especialmente na carreira universitária. O Programa PET na concepção do Colegiado do Curso de Engenharia de Alimentos constitui-se num componente curricular enriquecedor como nova estratégia de desenvolvimento do ensino superior, onde o graduado pode centrar seus estudos em áreas teóricas-práticas ou de formação profissional consolidando as técnicas de pesquisa, extensão e comunicação científica.

No grupo PET o acadêmico poderá aperfeiçoar as suas habilidades no desenvolvimento da pesquisa, em trabalhos de campo voltados para a extensão rural em contato com a realidade do setor primário do estado do Amazonas, em organizar palestras e eventos de cunho científico-acadêmico e ainda treinar a sua capacidade de comunicação oral e escrita. Assim, espera-se com a inclusão de acadêmicos de Engenharia de Alimentos da UFAM no Programa PET formar profissionais qualificados capazes de legitimarem sua participação deles no mercado de trabalho, através de decisões técnicas e políticas coerentes com efeito positivo sobre a sociedade na qual estão inseridos.

1.4.3 Monitoria

O programa de monitoria da UNIVERSIDADE FEDERAL DO AMAZONAS, contempla monitores remunerados e voluntários, o valor da bolsa é o mesmo para todos os programas (PET, PIBIC, Monitoria, Extensão e Trabalho), 400,00 (Quatrocentos reais, mensais, com duração de um ano, podendo ser renovado).

1.4.4 Bolsa de Iniciação Científica

As bolsas de Iniciação Científica destinam-se a estudantes do Curso de Engenharia de Alimentos que se proponham a participar, individualmente ou em equipe, de projeto de pesquisa desenvolvido por pesquisador ou professor da UFAM ou de outra instituição de ensino. O acadêmico ficará sob a responsabilidade de um orientador que se responsabilizará pela elaboração e implementação de um plano de trabalho a ser executado.

Nesta atividade o aluno de Engenharia de Alimentos poderá participar dos Programas de Iniciação Científica da UFAM sob a coordenação do Departamento de Apoio a Pesquisa (DAP) da Pró-Reitoria de Pesquisa e Pós-Gradução, do INPA (Instituto Nacional de Pesquisa da Amazônia) e da EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária).

Atualmente o Programa de Bolsa de Iniciação Científica da UFAM recebe apoio financeiro do CNPq, da FAPEAM e da própria UFAM.

1.4.5 Bolsa Trabalho

A UFAM oferece Bolsa-Trabalho para toda a comunidade acadêmica, onde os alunos podem desenvolver atividades em projetos de pesquisa, extensão e em outras atividades pertinentes ao curso de agronomia. Os candidatos são selecionados pela Pró-Reitoria de Assuntos Comunitários (PROCOMUM).

1.4.6 Estágio

O curso de Engenharia de Alimentos oferecerá estágios nos seus laboratórios e Setores para os acadêmicos, bem como Estágios em outras Instituições de Ensino e Pesquisa, Empresas e Unidades de Produção. Todos os Estágios serão administrados pela Pró-Reitoria de Ensino de Graduação e regidos por Resolução própria.

1.4.7 Participação de alunos em eventos técnico-científicos.

Os alunos serão incentivados pela Instituição a participarem de Congressos, Encontros Técnicos, Seminários, Simpósios, Cursos ou Atividades de Extensão. Todos os anos será realizada a Semana de Engenharia de Alimentos onde os alunos além de participarem das atividades desenvolvidas (palestras, mesa-redonda, mini-cursos) podem trabalhar na organização do evento. Os acadêmicos serão incentivados a participarem de eventos nacionais como forma de adquirir experiência, novos conhecimentos e manter contatos com professores/pesquisadores para futura orientação em pós-graduação.

1.4.8 Núcleo Docente Estruturante

O Núcleo Docente Estruturante do Curso de Graduação em Engenharia de Alimentos da Faculdade de Ciências Agrárias foi criado em 28/08/2013, com 06 (seis) membros eleitos pelo Colegiado do curso e funcionará de acordo com o que rege a Resolução 062/2011 da Câmara de Ensino de Graduação, do Conselho de Ensino, Pesquisa e Extensão da Universidade Federal do Amazonas.

1.4.9 Centro de Apoio Pedagógico

O Centro de Apoio Pedagógico vai funcionar acoplado às funções do Coordenador do curso, onde com o auxílio dos professores da FCA, tentam-se resolver os problemas de ordem acadêmico/didática, que surgem no decorrer de cada período letivo. Para tanto, realizam-se reuniões com os representantes do Centro acadêmico de agronomia, para debater os problemas e conseguir dentro do possível as suas soluções. Conta com o apoio dos Chefes dos Departamentos Acadêmicos da Faculdade de Ciências Agrárias e da Diretoria da Unidade, e dispõe de material para apoio didático, como projetores multimídias, sala de vídeo, laboratório de informática (com 15 computadores, impressoras e scanners), que ficam à disposição dos professores para a sua utilização, visando a melhoria da qualidade do ensino.

1.5Atividades de Ensino, além da graduação e sua contribuição para com esta:

1.5.1 Programas de pós-graduação (stricto sensu), com Conceito na CAPES

A Faculdade de Ciências Agrárias possui três Programas de Pós-Graduação, que visam a capacitação do profissional para o magistério superior e para a pesquisa, qualificando-o e habilitando-o, na teoria e na prática, para o desenvolvimento de projetos que visem solucionar os problemas das Ciências Agrárias. Os alunos do curso de Engenharia de Alimentos contam também com o Programa de Pós-Graduação da Faculdade de Ciências Farmacêuticas, e do Instituto de Ciências Biológicas. Segue a abaixo a descrição dos cursos.

- FCA: a) Programa de Pós-Graduação em Agricultura Tropical (PPG-AT), em nível de Mestrado e Doutorado.
 - b) Programa de Pós- Graduação em Ciências Florestais e Ambientais (PPG-CIFA), em nível de Mestrado.
 - c) Programa de Pós- Graduação em Ciências Pesqueiras (PPG-CIPET), em nível de Mestrado e Doutorado.
- 2) FCF: Programa de Pós-Graduação em Ciência de Alimentos (PPG-CA), em nível de Mestrado.
- 3) ICB: a) Programa de Pós-Graduação em Biotecnologia (PPG-BIOTC), em nível de Mestrado e Doutorado

1.6 Assistência aos estudantes

A assistência aos estudantes é prestada através da Pró-Reitoria de Assuntos Comunitários, sendo oferecidos os seguintes serviços: médico e odontológico, Restaurante Universitário, Alojamento (Casa do Estudante) principalmente para alunos que vieram de outras cidades.

1.7. Acessibilidade

Atualmente, o interesse em se conceber os ambientes de forma mais abrangente e menos restritiva é um fator preponderante na inclusão social,ou seja, atenção à diversidade das pessoas, suas necessidades e possibilidades físicas e sensoriais.

Quando se reconhece a diversidade das pessoas, cabe-nos trabalhar os ambientes de forma a atender os nossos alunos com necessidades especiais, em ambientes livres de barreiras, planejando de forma mais abrangente e menos restritiva, o ambiente escolar.

Ao se receber os alunos com barreiras, que impedem alguns ao simples acesso à sala de aula, ao computador ou a ida ao banheiro com autonomia, está instaurado um poderoso fator de exclusão social e não haverá inclusão de fato. É preciso uma a infra-estrutura que seja coerente com os princípios de inclusão, e espelhe o respeito a estes alunos, através do cuidado com instalações aptas a recebê-los sem restrições, em um meio-ambiente atento às suas diferenças.

A infra-estrutura física hoje, do curso de Engenharia de Alimentos, possui ambientes que permite a acessibilidade a esse alunos, com elevadores nos blocos de salas de aula e laboratórios, banheiros adaptados, rampas de acesso, entre outros.

Nesse intuito, faz-se necessário adequações no que diz respeito ao processo pedagógico do curso, como:

- Equipamentos que atendam às normas técnicas de acessibilidade e permitir à todo usuário que necessite de uma ajuda técnica.
- Aumentar progressivamente a acessibilidade dos materiais educativos, recorrendo ao formato digital;
- Disponibilização de textos digitalizados através do leitor com sistema sonoro, sem necessitar da ajuda e da disponibilidade de outros;
- Tecnologia adequada às necessidades técnicas para acessibilidade digital;
- Programas de formação do corpo docente para o uso das novas metodologias de ensino com o objetivo de facilitar o processo de inclusão digital e utilização adequada das ferramentas (computadores, softwares, internet, etc.), bem como as ajudas técnicas que possam ser necessitadas por seus alunos.

1.8 PRINCÍPIOS NORTEADORES DA AVALIAÇÃO DA APRENDIZAGEM

1.8.1 Avaliação do Projeto Pedagógico do Curso de Engenharia de Alimentos

O Projeto Pedagógico do Curso de Engenharia de Alimentos não poderá ser considerada como irrefutável. Ela deverá ser acrescida de sugestões e ideias, mesmo antes de ser implantado, que possam sempre acompanhar as mudanças nas tecnologias e nas transformações sociais, superando limitações e atendendo as novas exigências do meio no qual o curso está inserido, expressando a identidade e as prioridades do curso. O Projeto Político-Pedagógico precisa ser fortalecido e renovar-se. Deve ser de responsabilidade da comunidade acadêmica e dos gestores, e deverá ser apropriada às suas ações administrativas e pedagógicas.

O resultado da avaliação deverá analisar a existência da coerência entre os elementos estruturais do Projeto e a pertinência da estrutura curricular em relação ao perfil desejado e o desempenho social do egresso. Assim, a avaliação deverá subsidiar reformas curriculares, estruturais, logísticas entre outras que visem à adequação do projeto as novas mudanças contextuais.

Neste contexto, o Colegiado de Curso de Engenharia de Alimentos fará a avaliação anual do Projeto Político-Pedagógico, com a participação do Corpo Docente, Corpo Discente, Técnicos Administrativos, Profissionais atuantes na área de Engenharia de alimentos, representantes das Instituições Públicas e Privadas, e, Empresas do ramo para assim, serem tomadas decisões Institucionais que permitam a melhoria da qualidade de ensino. Ao final será elaborado um relatório pelo Colegiado de Curso.

1.8.2 Avaliação da Matriz Curricular

Após implantação do atual currículo em 2012, sugere-se que sejam realizados seminários de avaliação curricular anuais, tendo a participação dos acadêmicos, dos professores, dos funcionários, de profissionais e dos egressos do curso. Atendendo as sugestões,os resultados dessa avaliação serão realizadas mudanças a fim de corrigir os erros que porventura, forem detectados nestes eventos, tais como carga horária e/ou conteúdo inadequados ou defasados e a criação de novas disciplinas optativas para novas áreas de atuação profissional.

1.8.3 Avaliação dos Docentes:

Os professores são avaliados pelos acadêmicos através de um questionário, respondido pelo mesmo via sistema computadorizado. Os alunos do curso de Engenharia de Alimentos e da Universidade como um todo só podem adquirir o histórico escolar semestral após realizar a avaliação dos professores no sistema. O próprio docente é obrigado pelo regimento da UFAM anexar no processo de solicitação de progressão funcional, a avaliação feita pelos discentes em relação a sua atuação na disciplina e a sua auto-avaliação (mesmo questionário).

1.8.4 Avaliação pelos Discentes

Os acadêmicos poderão promover em seu Centro Acadêmico, o fórum de discussão dos rumos do Curso e da sua Unidade Acadêmica. Além, de terem representação (proporcional) com direito a voz e voto em todas as instâncias deliberativas acadêmicas.

2 INFRA-ESTRUTURA NECESSÁRIA

2.1 INFRA ESTRUTURA EXISTENTE NA FCA

A Faculdade Ciências Agrárias possui a seguinte infra-estrutura, para atender o início da implantação do Curso de Engenharia de Alimentos:

Quadro 02. Infraestrutura existente na Faculdade de Ciências Agrárias

	Salas de aula						
Bloco	Quantidade	Capacidade (nº de alunos)					
U	02	50					
U	01	120					
Paulo Burheim	12	50					
Bloco I/FCA	08	45					
Bloco II/FCA	13	45					

	Auditór	io
Bloco	Número	Capacidade (nº de alunos)
Bloco I/FCA	01	400

Laboratórios	
Laboratorios	

Bloco/Unidade	Denominação	Capacidade (n° de alunos)
B/ICE	Laboratório de Química Analítica	20
B/ICE	Laboratório de Química Orgânica	20
B/ICE	Laboratório de Físico-Química	20
B/ICE	Laboratório de Física	20
C/ICB	Laboratório de Cultura de Tecidos	20
F/FCA	Laboratório de Microscopia	20
F/FCA	Laboratório de Produtos Bioativos de Origem Microbiana	10
F/FCA	Laboratório de Microbiologia Agrícola	20
G/BIOTEC	Laboratório de Tecnologias de DNA	20
G/BIOTEC	Central Analítica	20
G/BIOTEC	Laboratório de Diagnóstico Molecular	20
G/BIOTEC	Laboratório de Bioinformática	20
G/BIOTEC	Laboratório de Purificação de Moléculas	20
U/FCA	Laboratório de Informática	20
V/FCA	Laboratório de Sementes 1	20
V/FCA	Laboratório de Sementes 2	20
V/FCA	Laboratório de Tecnologia de Pescado I	20
V/FCA	Laboratório de Tecnologia de Pescado II	20
V/FCA	Laboratório de Botânica Agroflorestal	20
X/FCA	Laboratório de Entomologia Agrícola	20

Unillas	111514	140:00
Outras		uçoco

Local	Denominação
	Setor de Avicultura
	Incubatório: sala de incubação, sala de eclosão, sala de seleção,
	vacinação e embalagens de pintos, câmara fria para armazenamento de
	ovos
	Galpão de reprodutores (8 x 25 m)
FCA	Galpão experimental para frangos de corte (8 x 25 m)
	Galpão para aves em cria e recria (8 x 25 m)
	Galpão experimental para aves de postura em gaiolas (3,5 x 17 m)
	Unidade demonstrativa de criação caipira de galinhas
	Fábrica de ração (60 m²)
	Setor de Olericultura
	Olericultura:
	- Sala da Coordenação
FCA	- Laboratório
	- Câmara de armazenamento de sementes
	- Casa-de-Vegetação germinada (8 x 38 m)
	-Almoxarifado
	Fazenda Experimental da UFAM
	Laboratório de piscicultura/aqüicultura (70 m²)
	Laboratório de fontes alternativas de energia (90 m²) Salas de aula (2 salas com 50 m² e 1 sala com 90 m²)
	Refeitório para 70 pessoas
Rodovia BR-174	Alojamento para 50 pessoas
	Aviários de postura (2 com 70 m² cada)
	Aviários de corte intensivo e semi-intensivo (2 com 600 m²)
	Pocilga (60 m ²)
	01 Curral 01 Minhocário
	01 Fábrica de ração
	01 Mini-serraria
L.	

01 Garagem/oficina
01 Estação meteorológica
Equipamentos da Fazenda Experimental
- 01 Grupo Gerador
- 01 Biodigestores
- 01 Triturador para fabricação de ração
- 03 Bomba dágua
Fazenda Experimental – Zootecnia
Rebanho Bovino - 36 animais (1 reprodutor, 16 fêmeas em fase de
reprodução, e 19 animais jovens) – mestiço girolanda)
Plantel suíno: 74 animais
Plantel de aves: 450 postura, 230 corte; - FC caboclo
Plantel equinos: 2 animais (1 macho e 1 fêmea)

2.2 INFRA ESTRUTURA A ADQUIRIR

2.2.1 Laboratórios e Equipamentos necessários para desenvolver as atividades desta Estrutura Curricular

Quadro 03 - Relação de Laboratórios e equipamentos necessários para funcionamento do Curso de Engenharia de Alimentos

PERÍODO	EQUIPAMENTO			
LETIVO		NECESSÁRIA	EXISTENTE	ADQUIRIR
(USO)				
	LABORATÓRIO	DE ANÁLISE SEN	ISORIAL	
Todos	Fogão (6 bocas)	01		01
Todos	Geladeira	01		01
Todos	Colorímetro	01		01
Todos	Texturômetro	01		01
Todos	Freezer horizontal	01		01
Todos	Balança	02		02
Todos	Refratômetro de campo	02		02
Todos	Refratômetro de mesa	01		01
Todos	Forno elétrico	01		01

Todos	Liquidificador	01	01
Todos	Estufa padrão com temperatura de 115°C	01	01
Todos	Estufa para secagem de vidraria	01	01
Todos	Banho Maria com Temperatura Controlada	01	01
Todos	Chapa Aquecedora com capacidade para 10 erlenmeyers de 50 mL	01	01
Todos	Balança Analítica	01	01

	LABORATÓRIO DE	ANÁLISE DE ALIN	IENTOS
Todos	Fogão (6 bocas)	01	01
Todos	Mufla	01	01
Todos	Equipamento Micro Kjeldahl	01	
Todos	Equipamento Micro Soxlet	01	01
Todos	Equipamento pHmetrodigital	01	01
Todos	Colorímetro	01	01
Todos	Cromatógrafo a Gás	01	01
Todos	Cromatógrafo de Camada Delgada e de Papel	01	01
Todos	Equipamento de Ressonância Nuclear Magnética	01	01
Todos	Espectroscópio de	01	01

	Absorção Atômica		
Todos	Liofilizador	01	01
Todos	Espectroscópio de Ultravioleta	01	01
Todos	Geladeira	01	01
Todos	Freezer horizontal	01	01
Todos	Balança	02	01
Todos	Refratômetro de campo	02	02
Todos	Refratômetro de mesa	01	01
Todos	Forno elétrico	01	01
Todos	Liquidificador	01	01
Todos	Estufa padrão com temperatura de 115°C	01	01
Todos	Estufa para secagem de vidraria	01	01
Todos	Banho Maria com Temperatura Controlada	01	01
Todos	Chapa Aquecedora com capacidade para 10 erlenmeyers de 50 mL	01	01
Todos	Balança Analítica	01	01
	LABORATÓRIO DE QUÍMIC	A E BIOQUÍMICA DE	ALIMENTOS
Todos	Fogão (6 bocas)	01	01
Todos	Geladeira	01	01
Todos	Freezer horizontal	01	01
Todos	Balança	02	01
Todos	Refratômetro de campo	02	02

Todos	Refratômetro de mesa	01	01
Todos	Forno elétrico	01	01
Todos	Liquidificador	01	01
Todos	Estufa padrão com temperatura de 115°C	01	01
Todos	Estufa para secagem de vidraria	01	01
Todos	Banho Maria com Temperatura Controlada	01	01
Todos	Chapa Aquecedora com capacidade para 10 erlenmeyers de 50 mL	01	01
Todos	Balança Analítica	01	01

LABORATÓRIO DE NUTRIÇÃO E COZINHA EXPERIMENTAL				
Todos	Fogão	01		01
Todos	Geladeira	01		01

LABORATÓRIO DE MICROBIOLOGIA DE ALIMENTOS					
Todos	Microscópios	10	15		
Todos	Geladeira	01	01		
Todos	Fogão	01	01		
Todos	Forno Microondas	01	01		
Todos	Freezer	01	01		
Todos	Estufas	06	06		
Todos	Auclave Vertical	01	01		
Todos	Banho maria	02	02		
Todos	Contador de Placas	02	02		

Todos	Auclave Horizontal	01	01

2.2.2 Infra-Estrutura a ser Construída

São necessárias durante para a implantação do curso de Engenharia de Alimentos Salas de Aula, instalação das Plantas Piloto de Processamento de Produtos Alimentícios, laboratórios equipados, salas de professores, chefia de departamento, Laboratórios de Informática, Centro Acadêmico, Empresa Júnior, etc. que hoje são atendidas pelos Blocos I e II da Faculdade de Ciências Agrárias (FCA).

O pleno funcionamento desta infra-estrutura será importante na construção de uma forma ampla do conhecimento através da integração entre teoria e prática, além de, propiciar que os alunos desenvolvam atividades acadêmicas complementares, tais como estágios, desenvolvimento de projetos de pesquisa e de extensão, e outros.

					,			~
Δс	nlantae	pilotos as	011D CD	rotoro	o narac	nrata	antariar	cau.
റാ	piaritas	pilotos as	que se	101010	o parac	naio	antenoi	Sau.

□ Operações Unitárias
□ Processamento de Vegetais
☐ Minimamente Processados
□ Panificação e Amiláceos
□ Leite e Produtos Lácteos
☐ Engenharia de Bioprocessos
□ Processamento de Produtos Cárneos

A seguir está apresentada a relação dos principais equipamentos necessários para o funcionamento das plantas pilotos:

PLANTA PILOTO	EQUIPAMENTOS
	1. Secadores
	2. Túnel de congelamento (sistema de refrigeração)
	3. Reatores de bancada (recipiente de controle de temperaturas).
	4. Coluna de destilação (pequena)

	5. Evaporadores
OPERAÇÕES UNITÁRIAS	6. Spray Dryier
	7. Bombas p/ fluídos
	8. Bomba à vácuo
	9. Prensas p/ óleo (extratores)
	10. Tanques pequenos inox (capacidade 30l)
	11. Trocadores de calor (cascos, placas e tubos)
	12. Caldeira (a gás ou a lenha)
	13. Moinhos (martelo disco e bola)
	14. Sistemas classificadores de sólidos
	1. Balança
	2. Câmara fria
	3. Esteira inox de classificação
	4. Mesa inox p/ limpeza
	5. Descascador de vegetais inox
	6. Fatiador de vegetais inox
	7. Tanque p/ lavagem de vegetais inox
	8. Tanque c/ cestos perfurados de inox (p/
PROCESSAMENTO DE	branqueamento)
VEGETAIS	9. Despolpadeira
	10. Sistema de exaustão (túnel)
	11. Autoclaves (com sistema de controle externo detemperatura no interior das latas c/ termopar)
	12. Envasadora
	13. Recravadeira
	14. Evaporador aberto encamisado (tacho inox c/agitação)

	15. Evaporador à vácuo inox	
	Câmara fria de armazenamento definitivo	
	2. Câmara fria para processamento (sala	
MINIMAMENTE	refrigerada)	
PROCESSADOS	3. Recepção p/ limpeza, lavagem	
	4. Descascador	
	5. Fatiador	
	6. Lavador de vegetais	
	1. Forno elétrico	
	2. Câmara de crescimento	
	3. Amassadeira rápida	
	4. Câmara de descanso	
PANIFICAÇÃO E AMILÁCEOS	5. Modeladora	
	6. Divisora	
	7. Dosador de água (refrigerado)	
	8. Cilindro	
	9. Batedeira	
	10. Estante móvel p/ câmara de fermentação	
	11. Boleadora	
	12. Fogão	
	1. Tanque de resfriamento (500 l)	
	2. Pasteurizador 300 l/h	
	3. Sistema de água gelada	
	4. Bomba de água gelada	
LEITE E PRODUTOS LÁCTEOS	5. Tubulação	
	6. Tanque pulmão	
	7. Bomba de transferência	
	8. Embaladeira	

	9. Datador
	10. Tacho basculante p/ fabricação de doce de leite erequeijão
	11. logurteira
	1. Cutter
	2. Embutideira pneumática para produto
	emulsionado
	3. Estufa de defumação
	4. Tacho com aquecimento à vapor
	5. Tumbles refrigerado
	6. Seladora à vácuo
	7. Balança de 5 Kg
PROCESSAMENTO DEPRODUTOS	8. Balança de 500 gr
CÁRNEOS	9. Esterilizador à vapor para 2 facas
	10. Forno elétrico
	11. Estufa ou Câmara de cozimento
	12. Moedor de carne para 100kg/h com faca e disco
	inox
	13. Misturadeira (50 I)
	14. Câmara fria modular de 75 m2 com controle de
	temperatura de 0 a -20° C
	15. Serra fita
	16. Túnel de congelamento de armário
	1. Fermentador
ENGENHARIA DE BIOPROCESSOS	

3. CORPO DOCENTE E TÉCNICO-ADMINISTRATIVO

3.1 Corpo Docenteda UFAM que poderá contribuir para a implantação do Curso

Quadro 04 - Relação de professores do quadro permanente de UFAM, com titulação em áreas afins com disciplinas do Curso de Engenharia de alimentos

Nome	Titulação	Área de Conhec. da Titulação	R. T.
Antonio Machado Leitão	Doutor	Tecnologia de Alimentos	DE
Antonio José Inhamuns da Silva	Doutor	Ciência de Alimentos	DE
Pedro Roberto de Oliveira	Doutor	Tecnologia de Alimentos	DE
Eyde Cristianne S. dos Santos	Doutora	Eletricidade e bioenergia	DE
Edivânia dos Santos Schröpfer	Doutora	Recursos Hídricos	DE
Paulo Fischer Kuhn	Doutor	Calculo	DE
Carlos Victor Lamarão	Mestre	Engenharia de Alimentos	DE
Francimar de Araújo Mamed	Mestre	Economia Rural	DE
Maria Angélica Corrêa Laredo	Mestre	Economia Pesqueira	DE
Gilberto Nogueira A. Peixoto	Mestre	Administração e	DE
		Análise de Projetos	
Ruiter Braga Caldas	Doutor	Informática	DE
Lúcia Helena F. da Silva	Doutora	Comunicação e Expressão	DE
José Carlos Antonio	Mestre	Física	DE
José Cardoso Neto	Doutor	Estatística	DE
Genilson Pereira Santana	Doutor	Química	DE
Sandra do Nascimento Noda	Doutora	Sociologia	DE
Therezinha de Jesus P. Fraxe	Doutora	Comunicação Social	DE
Antonio Raimundo Veras Garcia	Espec.	Cálculo	DE
Flávia Morgana de Oliveira Jacinto	Mestre	Álgebra Linear	DE
Jefferson Pinheiro de Oliveira	Mestre	Desenho Técnico	DE

3.1.1 Necessidade de contratação de professores:

Para implantar e cumprir o Currículo mínimo proposto e estimular que cada professor do Corpo Docente do Curso de Engenharia de Alimentos ofereça uma disciplina optativa, estima-se a necessidade inicial de contratação de 10 (dez) professores no ano de 2011; 08 (oito) em 2012; 04 (quatro) em 2013; e 02 (dois) em 2014, totalizando 24 (vinte e quatro) para atenderem a oferta das disciplinas específicas e profissionalizantes do Curso, conforme quadro abaixo, bem como, fazem-se necessárias para garantir disponibilidade de tempo para todos os docentes se envolverem em Atividades Acadêmicas (Orientação de Estágios Curriculares e Obrigatórios, Trabalhos de Conclusão de Curso, Orientação de Iniciação Científica, etc.), programa de Pós-Graduação, Atividades de Extensão, Pesquisa e Administrativas, e ainda iniciarem as Linhas de Pesquisa no Âmbito da Indústria Alimentícia.

Quadro 05 - Relação de Professores necessários para implantar e consolidar o Curso de Engenharia de Alimentos

ÁREA DE CONHECIMENTO DA TITUL./QUALIFICAÇÃO	R. T.	DISCIPLINAS EM QUE IRÃO ATUAR	NEC.
Doutor em: Química; Físico- Química; Bioquímica de Alimentos; Ciência de Alimentos; Eng. de Alimentos	DE	Química de Alimentos	03
		Bioquímica de Alimentos	
		Transformações Bioqquímicas de Alimentos	
Doutor em: Ciência de	DE	Microbiologia de Alimentos	
Alimentos; Microbiologia de Alimentos; Eng. de Alimentos		Toxicologia de Alimentos	
		Termobacterioloogia Aplicadaa Alimentos;Segurança de Alimentos	03
		Microbiologia de Processos	
		Segurança Industrial	
Doutor em: Fisiologia Pós-Colheita de Frutos e Hortaliças; Eng. Agrícola; Eng. de Alimentos	DE	Características e Pré-Processamento de Produtos Agrícolas	02
Doutor em:Ciência de Alimentos; Controle de Qualidade na Indústria de Alimentos; Eng. de Alimentos	DE	Análise Sensorial de Alimentos Controle de Qualidade na Indústria de	02

		Alimentos	
Doutor em:Ciência de Alimentos; Fermentações Industriais; Bioprocessos; Eng. de Alimentos	DE	Engenharia de Bioprocessos	02
Doutor em:Ciência de Alimentos; Tecnologia de Alimentos; Eng. de Alimentos	DE	Processamento de Produtos	04
Doutor em: Eng. de Alimentos; Eng. Mecânica; Eng. Agrícola	DE	Mecânica Aplic.à Eng. de Alimentos Termodinnâmica; Refrigeração Fenômeno de Transportes Instalações Industriais Instrumentação e Controle Operações Unitárias I Operações Unitárias II	
Doutor em:Ciência de Alimentos; Tecnologia de Alimentos; Eng. de Alimentos	DE	Embalagens de Alimentos	01

3.2Técnicos de Laboratórios que podem contribuir para a implantação do Curso

Quadro 06. Relação dos técnicos de Laboratório do quadro da FCA

Nome	Cargo	Local/Locação	Graduação
Ângela Maria da Silva Mendes	Téc. Laboratório	Lab. Semente	Doutora
Antonio Fábio Lopes de Souza	Téc. De Laboratório	Lab. Téc. Pescado	Doutorando
Clayton R. Barbosa Colares	Téc. De Laboratório	Lab. De sementes II	Graduado
Francisco Clóvis Costa da Silva	Téc. De Laboratório	Lab. Entomologia	Mestre

Gilsimar de Brito Melo	Téc. De Laboratório	Lab. Ciência plantas daninhas	Graduado
Ivanildo Lima Alves dos Santos	Aux. Laboratório	Laboratório	Especialista
Lourdes Mylla Rocha Perdigão	Téc. De Laboratório	Laboratório de Microbiologia	Graduação
Manoel Roberto Pereira Viana	Téc. De Laboratório	LABAF	Mestrando
Ricardo Aparício Guimarães	Aux. Laboratório	Lab. Tec. Pescado	Graduação
Rinaldo da Silva Vieira	Aux. Operacional	Lab. De informática	Graduação
Rita Mileni de Souza Lima	Téc. de Laboratório	Lab. Liminologia	Mestre
Rodolfo Pessoa de Melo Moura	Téc. de Laboratório	Lab de Físico-química	Mestre
Victor José Repolho Rabelo	Téc. de Laboratório	Lab. Solos	Graduação
Zeina Silva de Oliveira	Téc. de Laboratório	Lab. Liminologia	Graduação
Wellington Gomes da Silva	Téc. de Laboratório	Lab. Gênese do solo	Doutor

3.2.1 Necessidade de contratação de Técnicos de Laboratórios

Para implantar e cumprir o Currículo Mínimo proposto é necessário a contratação de 09 (nove) Técnicos. Estes atenderão os Laboratórios existentes, bem como, a demanda criada por este Curso, com os Laboratórios e Plantas Piloto a serem construídos, conforme quadro a seguir:

Quadro 05 - Relação da necessidade de Técnicos de Laboratório para implantação e consolidação do Curso de Engenharia de Alimentos.

Titulação	Área de Conhec. da Titulação	Quantidade
Nivol Mádio	Missobiologia de Alimentos	04
Nível Médio	Microbiologia de Alimentos	01
Nível Médio	Tecnologia de Alimentos	01
Nível Médio	Ciência de Alimentos	01

Nível Médio	Engenharia Mecânica	01
.		
Nível Médio	Química de Alimentos	01
Nível Médio	Bioquímica de Alimentos	01
Nível Médio	Produtos Bioativos de Origem Microbiana	01
Nível Médio	Microscopia Eletrônica	01

3.3 Técnicos Administrativos que podem contribuir para a implantação do Curso

Quadro 06 - Relação dos Técnicos Administrativos existentes no quadro permanente da FCA

Nome	Cargo	Local/Locação	Graduação
Alcione B. dos Santos Filho	Aux. Agropecuário	Viveiro Florestal	Ensino médio
Alexandre Ferreira	Administrador	Afastado licença	
Ângela Maria da Silva Mendes	Téc. Laboratório	Lab. Semente	Doutora
Antonio de Souza Freitas	Aux. Operacional	Olericultura	Ensino médio
Caludinez de Lima Chaves	Aux. Agropecuário	Viveiro florestal	Ensino médio
Francisca Cavalcante da Silva	Aux. De Laboratório		Ensino médio
Francisco Alberto de L. Chaves	Aux. Operacional	Setor avicultura	Especialista
Franclin Farias de Souza	Aux. Operacional	Projeto de produção	Ensino médio
Laiza de Oliveira Lucas	Téc. De Laboratório	Preservação da madeira	Graduação
Marcelo Ferreira de Moraes	Téc. Agrícola	Afastado	Graduação
Marcy Pereira de Azevedo	Aux. Operacional	Projeto de Produção	Ensino médio
Nerci Nina Lima	Tecnóloga	Física da madeira	Doutora

Pedro Marinho de Carvalho	Mateiro	Viveiro Florestal	Graduação
Raimundo Damião S. dos Santos	Aux. Agropecuário	Projeto de produção	Ensino médio
Sebastião Corres de Nazaré	Aux. Agropecuário	Fazenda experimental	Graduando

3.3.1 Necessidade de Contratação de Técnicos Administrativos

Para implantar e cumprir o Currículo Mínimo proposto é necessário a contratação de Técnicos Administrativos para atenderem a demanda criada com este Curso, com a criação do Departamento Acadêmico, da Coordenação do Colegiado do Curso, da Cordenação de Estágio Curricular e da Coordenação de Trabalho de Conclusão de Curso de Engenharia de Alimentos, conforme quadro a seguir:

Quadro 07 - Relação da necessidade de Técnicos Administrativos para implantação e consolidação do Curso de Engenharia de alimentos

Titulação	Área de Conhecimento	Quantidade
Nível Médio	Administração	02

ANEXO A

A - Legislação:

- A1. Resolução nº 1.010, de 22 de agosto de 2005, do Conselho Federal de Engenharia, Arquitetura e Agronomia;
- A2. Resolução nº 11, de 11 de março de 2002, da Câmara de Educação Superior, Conselho Nacional deEducação;
- A3. Resolução nº 2, de 18 de junho de 2007, da Câmara de Educação Superior, do Conselho Nacional deEducação;
- A4 . Resolução nº 062, de 30 de setembro de 2011, da Câmara de Ensino Graduação, do Conselho de Ensino, Pesquisa e Extensão, da Universidade Federal do Amazonas;

ANEXO B

REGULAMENTAÇÃO DO TRABALHO DE CONCLUSÃO DE CURSO -TCC DO CURSO DE GRADUAÇÃO/BACHARELADO ENGENHARIA DE ALIMENTOS

O Trabalho de Conclusão de Curso será feito na forma de Monografia, a qual deve impreterivelmente seguir as regras descritas abaixo:

I - Normas Gerais

- Art. 1° A MONOGRAFIA tem como objetivo, possibilitar aos alunos do curso de Engenharia de Alimentos, uma iniciação a pesquisa científica de forma a torná-los capazes de melhor entender a problemática da conservação e manufaturação das matérias primas agropecuárias da região amazônica e no encaminhamento das soluções.
 - **Parágrafo único**. A confecção da Monografia obedecerá às normas estabelecidas pela Coordenação de Monografia a ser designada pelo Colegiado de Curso.
- **Art. 2°-** O aluno apto em realizar a atividade de monografia deverá fazer a sua matricula na FGE105 Trabalho de Conclusão de Curso.
 - § 1° O aluno só deverá se matricular nessa disciplina, quando tiver certeza que concluirá a monografia no período em que se matriculou.
 - § 2° O aluno para matricular-se nessa disciplina deverá ter cursado no mínimo 50% dos créditos em disciplinas obrigatórias.
 - § 3° O aluno que não concluir a atividade no período matriculado receberá nota 0 (zero) e será reprovado.
 - § 4° Essa disciplina possui carga horária total de 60 horas (Trabalho de Conclusão de Curso), correspondendo a 04 créditos totais..
- Art. 3°- A Coordenação da Atividade de Monografia será exercida por um professor da Faculdade de Ciências Agrárias que ministre regularmente disciplinas para o curso de Engenharia de Alimentos e cujo nome deverá ser escolhido em reunião do Colegiado do Curso de Engenharia de Alimentos.
 - Parágrafo único: O professor Coordenador dessa atividade deverá se obrigatoriamente professor de carreira da Universidade Federal do Amazonas e lotado na Faculdade de Ciências Agrárias.

II - Do Comitê de Monografia

- Art. 4° A todo aluno que deseje desenvolver uma atividade de pesquisa, será garantido um Comitê de Orientação formado por um Orientador e/ou um Co-Orientador.
- Art. 5° Para participar do Comitê de Monografia será exigido no mínimo o título de Mestre.
- Art. 6° O Comitê de Monografia deverá fazer parte da Banca Examinadora do trabalho final, tanto em relação ao trabalho escrito como na apresentação do trabalho em data previamente marcada.

III - Do Plano da Monografia

- **Art. 7° -** Após a definição do Comitê de Monografia o aluno em consonância com o seu Orientador e/ou Co-Orientador, elaborará um Plano de Monografia.
 - § 1° O plano de monografia deverá conter:
 - Introdução (descrição do problema e justificativa);
 - Objetivo (Geral e específicos);
 - Material e Métodos;
 - · Cronograma de Atividades;
 - · Orçamento;
 - Bibliografia.
 - § 2° A confecção do plano de monografia deve seguir as normas estabelecidas pela Coordenação de pesquisa e não deverá exceder 10 laudas.
- Art. 8° O Plano de Monografia deverá ser submetido à aprovação pelo Colegiado do Curso de Engenharia de Alimentos, o qual se reserva o direito de aprovar, rejeitar ou sugerir modificações.
- **Art. 9°** A mudança de Orientador e do Comitê de Monografia só poderá ser feita por motivos justificáveis junto a Coordenação de Monografia.

IV - Da Aprovação e Homologação da Monografia

- Art. 10 Após a conclusão do trabalho de monografia pelo aluno, este deverá ser submetido à Banca Examinadora que será constituída pelo Comitê de Monografia e mais dois membros com titulação mínima de Mestrado a ser indicado pelo Coordenador de Pesquisa.
- Art. 11 A Banca Examinadora deverá ter acesso ao trabalho a ser defendido, no mínimo 30 dias antes de sua defesa.

- **Art. 12-** A nota final da pesquisa será a média aritmética das notas atribuídas pelos membros da Banca Examinadora, no momento em que ela for defendida de acordo com o quadro 1.
- Art. 13 A defesa do "Trabalho de Conclusão de Curso" será feita por meio de uma apresentação oral com tempo mínimo de 20 min e máximo de 30 min, seguido de 10 minutos de argüição para cada membro da Banca Examinadora em local previamente divulgado pela Coordenação de Monografia.
- **Art. 15 -** Será considerado aprovado o aluno que obtiver média final maior ou igual a 5,0 (cinco) com base nos critérios contidos no quadro 1, cujas as notas serão de 0 (zero) a 10 (dez)

Quadro 1. Critérios a serem adotados pela Banca Examinadora de defesa de monografia

Critérios para avaliação	Nota
Clareza na exposição	
Domínio de conhecimento do conteúdo e segurança	
Apresentação, performance e entusiasmo	
Valor técnico do tratamento do tema	
Utilização do tempo de exposição	
Postura crítica	
Clareza, essencialidade na apresentação das conclusões	
Clareza na percepção da problemática	
Conhecimento, clareza, obetividade nas respostas	
Contribuição em relação ao currículo do curso	
Média	

Art. 16 - Após a defesa o aluno deverá fazer as correções sugeridas pela Banca Examinadora e entregar ao Coordenador de Pesquisa, duas cópias impressas e com capa dura na cor azul e uma digital.

- § 1º As notas dos alunos que defenderam seus trabalhos serão encaminhada pelo Coordenador de Pesquisa à Coordenação de Curso de Engenharia de Alimentos.
- § 2º O aluno terá prazo máximo de 15 dias a contar da data de defesa do trabalho para fazer as correções sugeridas pela banca examinadora.
- § 3° O aluno que não obedecer ao prazo estabelecido no § 2° do Art. 38 não terá sua nota lançada, inviabilizando sua colação de grau.
- **Art. 17–** O aluno necessita ter cursado e estar aprovado em, no mínimo, 50% das disciplinas obrigatórias da grade curricular do curso de engenharia de alimentos para estar apto a realizar a disciplina "Trabalho de Conclusão de Curso".
- **Art. 18–** A disciplina "Trabalho de Conclusão de Curso" corresponde ao primeiro contato do aluno com o seu orientador de monografia e tem como principal caráter a ocorrência das primeiras discussões e ideias que fundamentarão a construção deste trabalho e seus tópicos principais como: resumo, revisão bibliográfica, justificativa, objetivos, metodologia, resultados e impactos esperados, cronograma de execução e referências bibliográficas.
- **Art. 19 –** O trabalho escrito desta referida disciplina deve ser entregue à comissão de professores responsável que, então, lançará uma nota (0 a 10), além de fornecer parecer com sugestões/críticas para cada monografia participante.
- **Art. 20 -** Os trabalhos escritos devem ser entregues à comissão no máximo 30 dias antes do término do calendário de estudo oficial da Universidade Federal do Amazonas. O aluno que não obedecer este prazo terá a nota "zero" automaticamente lançada em seu histórico escolar.
- **Art. 21–** O critério maior de julgamento do "Trabalho de Conclusão de Curso" deve girar em torno da sua relevância para a pesquisa e para o curso de engenharia de alimentos da Universidade Federal do Amazonas.

REGULAMENTAÇÃO DO ESTÁGIO CURRICULAR SUPERVISIONADO DO CURSO DE GRADUAÇÃO/BACHARELADO ENGENHARIA DE ALIMENTOS

O estágio curricular supervisionado é um conteúdo curricular obrigatório. Ele é um conjunto de atividades de formação, programadas e diretamente supervisionados por membros do corpo docente da instituição formadora e procuram assegurar a consolidação e a articulação das competências estabelecidas.

O estágio supervisionado visa assegurar o contato do formando com situações, contextos, instituições e empresas alimentícias, permitindo que conhecimentos, habilidades e atitudes se concretizem em ações profissionais, sendo recomendável que suas atividades se distribuam ao longo do curso.

Desse modo, o Estágio Curricular Supervisionado do Curso de Engenharia de Alimentos da Faculdade de Ciências Agrárias da Universidade Federal do Amazonas deve impreterivelmente seguir as regras descritas abaixo:

I - Normas Gerais

- Art. 1° O estágio supervisionado representa uma estratégia de profissionalização que complementa o processo ensino-aprendizagem através da interação teoria/prática, e tem como objetivo propiciar ao aluno estagiário a vivência da teoria adquirida, através de um treinamento em atividades profissionais diretamente ligadas à profissão do Engenheiro de Alimentos, e desta forma desenvolver uma consciência profissional.
- Art. 2° O estágio deverá ser realizado em Empresas Alimentícias, Instituições de Pesquisa, e Instituições que desenvolvam atividades afins, inclusive na Faculdade de Ciências Agrárias e na Fazenda Experimental da Universidade Federal do Amazonas.
- Art. 3° O aluno só poderá se matricular na disciplina FGE107 Estágio Curricular Supervisionado após ter cursado no mínimo 50% dos créditos das disciplinas obrigatórias e também ter cursado a(s) disciplina(s) da área do estágio.
- Art. 4° O estágio terá duração de 300 (trezentos) horas, correspondentes a 10 créditos práticos.
- Art. 5° A Coordenação de Estágio será exercida por um professor da Faculdade de Ciências Agrárias que ministre regularmente disciplinas para o curso de Engenharia de Alimentos e cujo nome deverá ser escolhido em reunião do Colegiado do Curso de Engenharia de Alimentos.

Parágrafo único: O professor Coordenador dessa atividade deverá ser obrigatoriamente professor de carreira da UFAM.

II - Das Vagas e Seleção

- Art. 6° O Coordenador de Estágio deverá divulgar o nome das Instituições ou Empresas com o respectivo número de vagas oferecidas aos alunos do curso de Engenmharia de Alimentos, bem como prestar esclarecimento aos discentes interessados nesta atividade.
- Art. 7° Caberá ao Coordenador de Estágio contatar as Instituições ou Empresas fornecedoras de vagas, verificando "in loco", se as mesmas preenchem os requisitos mínimos exigidos e manter um cadastro atualizado destas instituições.
- Art. 8° Quando houver mais de 01 (um) candidato para uma determinada vaga, será selecionado o aluno formando. Persistindo o empate utilizar-se-á o coeficiente de rendimento acadêmico como critério. Ainda assim persistindo o empate será selecionado o aluno que obtiver maior média na(s) disciplina(s) da área do estágio.

III - Do Comitê de Orientação

- Art. 9° A todo aluno que seja selecionado para participar do estágio supervisionado será garantido um Comitê de Orientação, formado por um Orientador e um Supervisor.
- Art. 10 O Orientador deverá ser obrigatoriamente, um professor de carreira da Faculdade de Ciências Agrárias e que ministre disciplina para o curso de Engenharia de Alimentos.
- Art. 11 O Supervisor deverá ser um profissional da Instituiçãoou Empresa, onde se realize o estágio, cuja seleção do mesmo será de inteira responsabilidade do professor orientador. O supervisor terá como funções:
 - e. Elaborar, em comum acordo com o estagiário e o orientador, o programa de estágio a ser cumprido;
 - f. Zelar pelo cumprimento do programa de estágio;
 - g. Avaliar o rendimento do aluno durante a realização do estágio
 - h. Introduzir o aluno no cenário onde se desenvolverá a ação, orientando seus primeiros passos profissionais em direção à competência e a excelência.

- **Art. 12** Após a definição do Comitê de Orientação, o aluno em concordância com o Orientador e Supervisor e observando as diretrizes internas e peculiaridades das atividades desenvolvidas pela instituição ou empresa onde se realizará o estágio irá elaborar um plano de estágio.
 - § 1° O plano deverá conter título, introdução, material e métodos, resultados esperados (no estágio) e bibliografia.
 - § 2° O relatório deve definir com clareza o que o estagiário irá realizar durante o período em que estiver estagiando.
 - § 3° As linhas básicas deste planejamento devem ser definidas pelo estagiário em comum acordo com seu orientador.
 - § 4° O plano de estágio é obrigatório e deverá seguir as normas da ABNT, sendo perfeitamente aceitáveis alterações que identifiquem determinadas peculiaridades.
- Art. 13 O estágio deverá desenvolver-se em local que ofereça condições plenas para a realização das atividades programadas, além de contar com a supervisão de profissional pertencente ao cenário onde o estágio estará se desenvolvendo.
- Art. 14 De posse do plano de estágio, o Coordenador de Estágios do curso de Engenharia de Alimentos, formalizará o estágio supervisionado junto à Instituição ou Empresa.
- Art. 15 Após a formalização do estágio na empresa, o Coordenador de Estágios encaminhará uma cópia do plano de estágio ao Coordenador do Curso de Engenharia de Alimentos.

V - Da Avaliação do Estágio

- Art. 16 O estágio será avaliado em duas etapas: a primeira pelo supervisor de estágio e a segunda por uma banca examinadora nomeada pelo Coordenador de estágio:
 - § 1º Na primeira avaliação, o supervisor deverá utilizar como critério os itens relacionados no Quadro 2, atribuindo nota de 0 (zero) a 10 (dez) para cada item avaliado.
- Quadro 2. Critérios a serem adotados pelo supervisor do estágio na avaliação do desempenho do estagiário/docente.

Critérios para avaliação	Peso	Nota
Assiduidade	1	

Disciplina	1	
Capacidade de Iniciativa	2	
Responsabilidade	1	
Capacidade de domínio técnico da área de estágio	3	
Média	i i	Σ(notas)/8

§ 2º Na segunda avaliação, uma banca examinadora composta por 02 (dois) profissionais na área do estágio, nomeada pelo Coordenador de Estágio, sendo um deles o Professor Orientador, atribuirão notas variando de 0 (zero) a 10 (dez) conforme critérios apresentados no Quadro 3.

Quadro 3. Critérios a serem adotados pelos avaliadores do relatório final do estágio

Critérios para avaliação	NOTA
Relevância do tema	
Obetividade na delimitação do assunto	
Conteúdo do desenvolvimento do assunto	
Profundidade de conhecimentos específicos	
Percepção da problemática da área em que atuou	
Postura crítica	
Clareza e essencialidade nas conclusões e sugestões	
Conhecimento e personalidade manifestadas nas conclusões	
Redação do texto e formalização do relatório	
Contribuição em relação ao Curriculo do Curso	
Média Média	

- Art. 17 O período de preparação do relatório final é de 45 dias, a contar do regresso do aluno à Faculdade de Ciências Agrárias (término do estágio na Instituição ou Empresa cedente), e deverá conter de uma forma geral o título, introdução e justificativa, material e métodos, resultados alcançados, conclusão e bibliografia, seguindo as normas da ABNT vigente.
- Art. 18 O relatório deverá ser entregue à Secretaria da Coordenação de Estágios em duas vias, findo os 45 dias considerados como período de elaboração. A secretaria encaminhará os relatórios para a Banca Examinadora, que terá quinze (15) dias para análise e correções necessárias.
- Art. 19 A nota final do estágio será a média aritmética das notas atribuídas pelo supervisor e pelos avaliadores do relatório final
- Art. 20 Será considerado aprovado o estagiário que obtiver nota final maior ou igual a 5,0 (cinco).
- Art. 21 O aluno só poderá colar grau mediante a entrega de três cópias do relatório final do estágio no Colegiado de Curso de Engenharia de Alimentos com todas as correções sugeridas pelos avaliadores, 30 dias após receber a cópia corrigida do segundo avaliador. Sendo uma cópia para a coordenação de estágio, uma para a biblioteca da UNIVERSIDADE FEDERAL DO AMAZONAS e outra para a Instituição ou Empresa em que foi realizado o estágio.
- **Art. 22 –** O aluno que não cumprir qualquer um dos prazos estabelecidos acima, terá a nota 0,0 (zero) automaticamente lançada em seu histórico escolar, portanto, sendo reprovado nesta disciplina.

ANEXO D

REGULAMENTO DAS ATIVIDADES COMPLEMENTARES DO CURSO DE GRADUAÇÃO/BACHARELADO ENGENHARIA DE ALIMENTOS

As Atividades Complementares se constituirão no aproveitamento de estudos e práticas na área do Curso e áreas afins realizadas ao longo de todo o Curso conforme o estabelecido pela Resolução CEG/CONSEP nº 018/2007.

Esta Resolução determina que Atividades Complementares sejam aquelas relacionadas com o ensino, a pesquisa e a extensão, validadas pela Coordenação do Curso.

- 4. Atividades Complementares de ENSINO são as ações desenvolvidas por meio das seguintes modalidades:
 - I Ministrante de curso de extensão e/ou debatedor em mesa redonda;
 - II Atividade de monitoria desenvolvida em relação às disciplinas oferecidas na área e conhecimento;
 - III Participação em Semana de Curso;
 - IV Participação em Programa Especial de Treinamento PET;
 - V Carga horária optativa excedente;
 - VI Outras atividades de Ensino a critério da coordenação do curso.
 - VII Estágios não obrigatórios, vinculados ao Ensino de Graduação e à matriz curricular do Curso em que o aluno se encontra matriculado.
- 5. São Atividades Complementares de PESQUISA E PRODUÇÃO CIENTÍFICA o conjunto de ações sistematizadas, coordenadas por um professor orientador, voltadas para a investigação de tema relevante na área de sua formação ou área afim:
 - I Participação em projetos de pesquisa aprovados e concluídos com bolsas do PIBIC;
 - II Participação em projetos de pesquisa aprovados em outros programas;
 - III Autor ou co-autor de artigo científico completo publicado em periódico com comissão editorial;
 - IV Autor ou co-autor de capítulo de livro;
 - V Premiação em trabalho acadêmico;
 - VI Outras atividades de Pesquisa a critério da coordenação do curso.
 - VII Apresentação de trabalho científico em eventos de âmbito regional, nacional ou internacional, como autor;
- 6. São Atividades Complementares de EXTENSÃO:

- I As desenvolvidas sob a forma de congressos, seminários, simpósios, conferências, palestras, fóruns, apresentações de painéis ou outras similares, como ouvinte ou participante direto;
- II As desenvolvidas sob a forma de curso de extensão;
- III Participação como membro de comissão organizadora de eventos científicos;
- IV Representação discente comprovada;
- V Outras atividades de Extensão a critério da coordenação do curso.

O aproveitamento das Atividades Complementares deverá ser solicitado mediante documento comprobatório, além disso, terá cumprido essa etapa (sendo considerado aprovado) o aluno que comprovar sua participação em atividades complementares de pesquisa, ensino e extensão a partir de carga horária mínima de 240 horas e máxima de 300 horas. Só poderão ser validadas atividades realizadas pelo aluno somente a partir de sua matrícula institucional no curso.

As atividades complementares devem ser realizadas em horário distinto daquele das aulas e demais atividades pedagógicas regulares do curso de graduação.

Ressalta-se ainda que as atividades registradas como complementares no histórico do aluno, não poderão ser aproveitadas como carga horária optativa.

As Diretrizes de pontuação para as atividades complementares do Curso de Engenharia de Alimentos são citadas a seguir, considerando que, para fins de incentivar a diversificação das atividades realizadas pelo estudante, os créditos complementares exigidos devem ser cumpridos por meio de, pelo menos, dois (2) tipos de atividades.

Pontuação das Atividades Complementares:

1 crédito a cada 60 horas

- a) Participação ativa em projetos de extensão universitária (bolsista remunerado ou voluntário);
- b) atividades de iniciação científica, realizadas no âmbito da UFAM;
- c) atividades de monitoria em disciplinas da UFAM;

- d) estágios extracurriculares desenvolvidos com base em convênios firmados pela UFAM;
- e) atividades desenvolvidas como Bolsa Permanência ou Bolsa Trabalho, no âmbito da UFAM;
- f) atividades desenvolvidas como Bolsa PET (Programa de Educação Tutorial), Bolsa EAD (Educação a Distância) e demais bolsas acadêmicas;
- g) participação em comissão coordenadora ou organizadora de evento de extensão isolado, devidamente registrado nos órgãos competentes.

1 crédito a cada 15 horas

- a) disciplinas de outros cursos/habilitações ou ênfases da UFAM, ou de instituições de ensino superior nacionais ou estrangeiras, previamente aprovadas;
- b) participação como agente passivo em cursos, seminários e demais atividades de extensão universitária, excluídas as atividades de prestação de serviços que envolvam remuneração de servidores docentes e/ou técnicos-administrativos da UFAM;
- c) atividades de extensão promovidas por outras instituições de ensino superior ou por órgão público.

3 créditos por publicação

a) publicações de artigos internacionais em periódico indexado, como autor principal.

2 crédito por publicação

a) publicações nacionais em periódico indexado, como autor principal

1 crédito por evento

- a) publicação nacional ou internacional como segundo autor;
- b) trabalhos completos publicados em eventos/congressos como primeiro autor;
- c) participação em eventos promovidos por Associação Científica reconhecida.

0,5 crédito por evento

- a) publicação de resumos em eventos/congressos como primeiro autor;
- b) participação em semanas acadêmicas e encontros estudantis;

0,25 crédito por evento

- a) publicação nacional ou internacional como terceiro autor em diante;
- b) trabalhos completos publicados em eventos/congressos como segundo autor em diante;
- c) publicação de resumos em eventos/congressos como segundo autor em diante.

1 crédito a cada 15 horas, assegurado um mínimo de 1 crédito por mandato

a) atividades de representação discente junto aos órgãos da Universidade, mediante comprovação de, no mínimo 75% de participação efetiva. O discente deverá apresentar o relatório de Atividades Complementares de Graduação à comissão responsável do curso de Engenharia de Alimentos, acompanhado de documentação comprobatória, obedecido ao prazo estabelecido (a partir do oitavo semestre e impreterivelmente antes da matrícula do último semestre).